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Preface

Just over twenty years ago I made what at first seemed like a small
discovery: a computer experiment of mine showed something I did not
expect. But the more I investigated, the more I realized that what I had
seen was the beginning of a crack in the very foundations of existing
science, and a first clue towards a whole new kind of science.

This book is the culmination of nearly twenty years of work that
I have done to develop that new kind of science. I had never expected it
would take anything like as long, but I have discovered vastly more
than I ever thought possible, and in fact what I have done now touches
almost every existing area of science, and quite a bit besides.

In the early years, I did as I had done before as a scientist, and
published accounts of my ongoing work in the scientific literature. But
although what I wrote seemed to be very well received, I gradually came
to realize that technical papers scattered across the journals of all sorts
of fields could never successfully communicate the kind of major new
intellectual structure that I seemed to be beginning to build.

So I resolved just to keep working quietly until T had finished, and
was ready to present everything in a single coherent way. Fifteen years
later this book is the result. And with it my hope is to share what I have
done with as wide a range of scientists and non-scientists as possible.

In modern times it has been almost unheard of for genuinely new
science to be presented for the first time in a book that can be read by
non-scientists. For progress in science has mostly tended to take place
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in small steps that cannot reasonably be explained without relying on
specialized technical knowledge of what has gone before.

But to develop the new kind of science that I describe in this book I
have had no choice but to take several large steps at once, and in doing so
I have mostly ended up having to start from scratch—with new ideas and
new methods that ultimately depend very little on what has gone before.

In some ways it might have been easier for me to present what I
have done in some kind of new technical formalism. But instead I have
chosen to spend the effort to take things to the point where they are clear
enough to be explained quite fully just in ordinary language and pictures.

Unfortunately, however, this will no doubt mean that there are
some—particularly from the existing sciences—who will at first
assume that their existing technical knowledge must somehow already
cover whatever is in this book. And a few, I fear, will stop at that point,
and choose to learn no more. But many, I hope, will at least look at the
book long enough to begin to be surprised by what it actually says.

At first probably they will think that parts of it cannot possibly
be correct—for they seem so at odds with existing science. And indeed
if T myself were just to pick up this book today without having spent
the past twenty years thinking about its contents, I have little doubt
that I too would not believe many of the things it says.

But the computer experiments on which the science in the book
is ultimately based are easy to check on any modern computer. And
almost all the arguments in the book—while often not conceptually
simple—require no specialized scientific or other knowledge to follow.

Yet it has certainly taken me years to come to terms with the
conclusions I have reached. And while I hope that all the effort I have
put into presentation in this book will make it easier for others, I do not
expect it to be a quick process. For to absorb in any real way what the
book has to say requires a fairly major shift in intuition and thinking.

But the most important first step, I believe, is just to recognize
what is involved. For though there are connections of all sorts, this
book is first and foremost about a fundamentally new intellectual
structure, that needs to be understood in its own terms, and cannot

reasonably be fit into any existing framework.
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It has been a great challenge for me to capture the things I have
discovered over the past twenty years in a book of manageable size. And to
do so T have often ended up compressing into a page or even a paragraph the
essence of what a chapter or even a book could have been written about.

In the quarter million or so words of the main text my emphasis
is on communicating the core of my ideas and discoveries—as well as
indicating a little of how I came to them. The last three hundred or so
pages of the book—themselves another quarter million or so words—
supplement the main text with many historical and technical notes,
and also summarize more discoveries. The notes that begin on page 849
address some specific issues about reading this book.

Throughout the book my primary concern is with basic science
and fundamental issues. But building on the foundations in the book
there are a vast array of applications—both conceptual and practical—
that can now be developed.

No doubt some will come quickly. But most will probably take
decades to emerge. Yet in time I expect that the ideas of this book will
come to pervade not only science and technology but also many areas of
general thinking. And with this its methods will eventually become a
standard part of education—much as mathematics is today. And in the
end most of what now seems surprising and remarkable in the book
will come to seem familiar and commonplace.

But for me what has always been most important is the actual
process of discovery. For I know of nothing as profoundly exciting as
to glimpse for the first time some new and basic truth. And now that I
have finished building the intellectual structure that I describe in this
book it is my hope that those who read these words can share in the

excitement I have had in making the discoveries that were involved.

Stephen Wolfram
January 15, 2002

xi



STEPHEN WOLFRAM

The creation of this book and the science it describes has been a vast
personal undertaking, spanning the better part of half my life so far.
And for it to all have been even remotely possible has required a
series of particular personal circumstances. Foremost among them is
that I have lived at the moment in history when technology has first
made it possible to do the kinds of things I have done. But also
crucial has been that my early successes in science and business have
for more than twenty years allowed me to be free to pursue the
personal intellectual objectives I have chosen.

That by my late teenage years I had already become established in
science was what originally provided the personal confidence and
practical situation that made it possible for me to embark on an
intellectual project as ambitious as this. My early experiences—
particularly in physics and computing—were crucial in pointing me
in the basic direction I took. My work in designing and documenting
Mathematica and its forerunners was central in developing for me a
certain definite pattern of clear thinking. My experiences in business
were also important in helping me form a capacity for making
strategic intellectual decisions. And the fact that for most of my life T
have tried to learn as broadly and deeply as possible about science
and other fields has provided me a crucial base of knowledge. But
more than anything else what has finally allowed me to create the
new kind of science in this book is Mathematica. For while building
Mathematica has taken a considerable amount of my time, I would
without it as a tool never have been able to do the vast majority of
what is now in this book.

In my early years I was very much a part of the traditional scientific
community. But had I remained there I have little doubt that I would
never have been able to create something of the magnitude that I
describe in this book. For even just to spend so many years on a
single project outside of existing disciplines—and without publishing
anything about it—would likely have become impossible even in the
highly favorable academic circumstances in which I found myself.

But with the commercial success of Mathematica and Wolfram
Research there have for many years not been any such issues for me.
And indeed, within my company I have been able to build up a
remarkable group of people—who have supported my efforts in all
sorts of ways. Over the past fifteen years hundreds of members of
our R&D and engineering groups have worked to take my ideas for
Mathematica and turn them into finished software that I and millions
of others rely on every day. And at one time or another almost every
major department of my company has provided help that has been
crucial to some aspect of the creation or production of this book.

Yet what is probably most striking is that even in my role as CEO of a
highly active company I have for more than ten years been able to
devote the large amounts of time that have been required to write
this book and develop the science it describes. And more than
anything else, what has made this possible is the outstanding team
that has helped manage the ongoing operations of the company—
especially our current executive committee: George Beck, Roger
Germundsson, Theodore Gray, Becky Porth, Brenda Skelly, Tom
Wickham-Jones and my brother Conrad Wolfram.

To pursue a project of the length and intensity of this book would not
have been possible without the great personal support of my family
and friends. Particularly crucial have been my wife—who has
contributed both directly and indirectly to many aspects of the form
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and content of this book, and my children—whose excitement about
the world has provided continual encouragement and stimulation.
Also important—especially in my youth—were my parents, who
supported my early interests and direction.

Like almost any highly creative project, the writing of this book has
ultimately been a quite solitary and personal matter. But I have been
fortunate over the years to employ a variety of talented assistants, who
have helped the project in many different ways: Eric Berg (project
management, 2000-2001), Jason Cawley (historical and philosophical
issues, 2001-2002 and before), Matthew Cook (technical content,
particularly constructions and proofs, 1991-1998), Andrew de Laix
(technical content and book production systems, 1998-2002),
Matthew Frank (mathematical and historical issues, 2001-2002),
Andrea Gerlach (fact finding and checking, 1999-2002), David
Hillman (constructions and other technical content, 1997-2001), Scott
Koranda (book production systems and project management, 1996—
1998), Ed Pegg, Jr. (technical content, 2000-2002), Todd Rowland
(mathematical issues, 2001-2002), Malgorzata Strzebonska (graphics
finishing, 1997-2002), Matthew Szudzik (mathematical issues, 1998—
2000, 2001), @yvind Tafjord (physics and other technical issues, 2001
2002), Kelli Wendt (project management, 2001-2002), Erik Winfree
(software development, 1991-1992). Other members of Wolfram
Research and Wolfram Media who have made particularly significant
contributions include: Larry Adelston (book layout, 2000-2002),
George Beck (project management oversight, 2001-2002 and before),
John Bonadies (cover design and other issues, 1995, 1991-1999), Cat
Boucher (project management, 2001-2002), Jean Buck (library research
1991-1999; many internal and external issues 1999-2002), Jeremy
Davis (design, 2000-2002), Deb Forgacs (library research, 2000-2002),
Thomasanna Hail (project management assistance, 2001), Yu He
(technical issues, 1991-1992), Andy Hunt (font design, 1997-2002),
Janice Hunter (book distribution, 2000-2002), André Kuzniarek (book
design and production, 1991-2002), Richard Miske (book layout,
2001-2002), Jan Progen (proofreading, 1997-2002), David Reiss
(external communications, 2001-2002), Patrick Rice (book build
automation, 2001-2002), Brenda Skelly (manufacturing management,
2001-2002 and before), Caroline Small (document quality assurance,
2001), Michael Trott (occasional technical issues, 1994-2002), Allan
Wylde (publishing issues, 1998-1999). (See also the colophon at the
very end of the book.) My administrative and computer systems
assistants have also been crucial in allowing me to maintain the high
level of personal productivity needed to pursue and complete this
project.

In developing the new kind of science in this book I have benefitted
in many ways from the worldwide intellectual community. I have
always worked hard to learn as many fields as possible as deeply as I
can—and to keep abreast of new developments that emerge. Part of
what has allowed me to do this is reading an immense number of
books, articles and websites. But over the years what has also been
important is that I have interacted personally with a great many
individuals, and I have been fortunate that my position in science
and technology has brought me into contact at one time or another
with the leaders of almost every major technical field.

In the early and mid-1980s I did collaborative work relevant to this
book—some published, some unpublished—with several people:
Richard Feynman (foundations of physics and computing), Olivier
Martin (additive cellular automata), John Milnor (mathematics of
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cellular automata), Andrew Odlyzko (additive cellular automata),
Norman Packard (2D cellular automata) and Jim Salem (cellular
automaton fluids).

Over the course of the past twenty years I have learned many things
relevant to this book from many people. Sometimes I have asked
specific questions and got specific answers. Sometimes discussions
separated by months or years have gradually made me come to
understand something. Sometimes just a single discussion has
caused me to learn an important fact or piece of history—or has
clarified limitations of some particular field. And sometimes a
question asked of me has led me to discover something or to see
how to present something better. In all I recall nearly three hundred
people who have helped me in these kinds of ways in the past
twenty years (this does not include people—especially from the
physics community—with whom my main interactions were before
1981, or those with whom my interactions have mostly been about
Mathematica or the business of Wolfram Research): Ralph Abraham,
Victor Adamchik, Ron Adrian, Guenther Ahlers, Berni Alder, Jan
Ambjorn, John Baez, Jim Bailey, Igor Bakshee, Mary Barsony, Andrej
Bauer, George Beck, Charles Bennett, Michael Berry, Philippe Binder,
Lenore Blum, Manuel Blum, Bruce Boghosian, Enrico Bombieri, Phil
Boyland, William Bricken, Bruno Buchberger, Art Burks, David
Campbell, John Campbell, Chris Carlson, Pete Carruthers, Forrest
Carter, Elise Cawley, Greg Chaitin, Steve Christensen, David
Chudnovsky, Gregory Chudnovsky, John Conway, Barbara Cooper,
Jack Cowan, Richard Crandall, Jim Crutchfield, Karel Culik, Predrag
Cvitanovi¢, Gautam Dasgupta, Roger Dashen, Martin Davis, Richard
Dawkins, David Deutsch, Kee Dewdney, Persi Diaconis, Whitfield
Diffie, Freeman Dyson, Paul Erd6s, Benson Farb, Doyne Farmer,
Mitchell Feigenbaum, Carl Feynman, Richard Feynman, David
Finkelstein, Michael Fisher, Mike Foale, Joseph Ford, John Franks, Ed
Fredkin, Harvey Friedman, Uriel Frisch, Peter Gacs, Jill Gardner,
Laurie Gay, Todd Gayley, Richard Gaylord, Murray Gell-Mann,
Roger Germundsson, Etienne Ghys, Don Glaser, Nigel Goldenfeld,
Shafi Goldwasser, Beatrice Golomb, Solomon Golomb, Bill Gosper,
Peter Grassberger, Alfred Gray, Jeremy Gray, John Gray, Theodore
Gray, David Griffeath, Misha Gromov, David Gross, John
Guckenheimer, Charlie Gunn, Howard Gutowitz, Hyman Hartman,
Jeff Harvey, Brosl Hasslacher, David Hawkins, Gustav Hedlund,
Danny Hillis, Pierre Hohenberg, John Holland, John Hopfield,
Bernardo Huberman, Alfred Hiibler, Dominique d’Humiéres, Lyman
Hurd, Ken Iverson, Raymond Jeanloz, Erica Jen, Leo Kadanoff, Dave
Kammeyer, Kuni Kaneko, Stuart Kauffman, Karen Kavanagh, Jerry
Keiper, Evelyn Fox Keller, Veikko Keranen, Scott Kirkpatrick, Sergiu
Klainerman, Rob Knapp, Don Knuth, Rocky Kolb, John Koza, Bob
Kraichnan, Yoshi Kuramoto, Jeff Lagarias, Rolf Landauer, Jim Langer,
Chris Langton, Joel Lebowitz, David Levermore, Leonid Levin, Silvio
Levy, Steven Levy, Debra Lewis, Wentian Li, Albert Libchaber, David
Librik, Dan Lichtblau, Doug Lind, Aristid Lindenmayer, Kristian
Lindgren, Chris Lindsey, Ed Lorenz, Saunders Mac Lane, Roman
Mader, Janice Malouf, Benoit Mandelbrot, Norman Margolus, Oleg
Marichev, Olivier Martin, Yuri Matiyasevich, John Maynard Smith,
Curt McMullen, Hans Meinhardt, Michel Mendes France, Nick
Metropolis, John Miller, John Milnor, Marvin Minsky, Don Mitchell,
Kim Molvig, John Moussouris, Walter Munk, Jim Murray, Lee
Neuwirth, Alan Newell, Mats Nordahl, John Novak, Andrew
QOdlyzko, Steve Orszag, George Oster, Peter Overmann, Norman

Packard, Heinz Pagels, Leonard Parker, Roger Payne, Holly Peck,
Hans-Otto Peitgen, Roger Penrose, Alan Perelson, Malcolm Perry,
Charlie Peskin, David Pines, Simon Plouffe, Yves Pomeau, Bjorn
Poonen, Marian Pour-El, Kendall Preston, Lutz Priese, Ilya
Prigogine, Itamar Procaccia, Charles Radin, Tom Ray, Jim Reeds,
John Reif, David Reiss, Stanley Reiter, Ken Ribet, Jane Richardson,
Ron Rivest, Igor Rivin, Terry Robb, Julia Robinson, Raphael
Robinson, Robert Rosen, Gian-Carlo Rota, Lee Rubel, Rudy Rucker,
David Ruelle, Jim Salem, Len Sander, Dana Scott, Terry Sejnowski,
Rob Shaw, Tim Shaw, Steve Shenker, Bev Sher, Tsutomu
Shimomura, Peter Shor, Brian Silverman, Karl Sims, Steven Skiena,
Steve Smale, Caroline Small, Alvy Ray Smith, Bruce Smith, Lee
Smolin, Mark Sofroniou, Gene Stanley, Ken Steiglitz, Dan Stein,
Paul Steinhardt, Pat Suppes, Gerry Sussman, Klaus Sutner, Noel
Swerdlow, Harry Swinney, Bart Taub, David Terr, René Thom, Bill
Thurston, Tom Toffoli, Alar Toomre, Russell Towle, Amos Tversky,
Stan Ulam, Leslie Valiant, Léon van Hove, Ilan Vardi, Hal Varian,
Geerat Vermeij, Gerard Vichniac, Stan Wagon, Bob Wainwright,
Bruce Walker, Denis Weaire, Eric Weisstein, Paul Wellin, Caroline
Wickham-Jones, Tom Wickham-Jones, Amie Wilkinson, Stephen
Willson, Jack Wisdom, Rob Wolff, Alexander Wolfram, Conrad
Wolfram, Sybil Wolfram, Lewis Wolpert, Michael Woodford, Larry
Wos, Larry Yaffe, Victor Yakhot, Jim Yorke, John Zerolis, Richard
Zippel, George Zweig, Helio Zwi. In addition to those with whom I
have had direct contact, other individuals have provided input
indirectly through my assistants or others (excluding photograph
sources listed in the colophon): Bill Beyer, Sheila Blair, Victor Dan,
Brent Daniel, Noam Elkies, Peter Falloon, Erich Friedman, Jochen
Gerber, Branko Griinbaum, Richard Guy, Michel Janssen, Martin
Kraus, Temur Kutsia, Richard Langley, Bernd Léchner, Crista Malick,
Brendan McKay, Thomas Scanlon, Rob Scharein, Marjorie Senechal,
Marc Sher, David Singmaster, Neil Sloane, Milton Van Dyke, Bob
Veroff, Curtis Wilson, Mirek Wojtowicz. Librarians at many
institutions—especially the University of Illinois—have often helped
my assistants in locating materials. Many individuals at Wolfram
Research have also contributed their collective breadth of knowledge
on diverse smaller questions.

I began serious development of ideas that eventually led to this book
in 1981, and until 1988 I continued to be a member of various
academic institutions: California Institute of Technology (Physics
Department, 1978-1982), Institute for Advanced Study, Princeton
(School of Natural Sciences, 1982-1986), University of Illinois
(Center for Complex Systems Research, and Departments of Physics,
Mathematics and Computer Science, 1986-1988). 1 built up
successively larger research groups at these institutions, and both the
scientific and other members of these groups made a variety of
contributions to my work.

In the early to mid-1980s I was a consultant to a number of
organizations. The primary ones at which I pursued projects that
helped me in formulating issues for this book were Bell Laboratories,
Los Alamos National Laboratory and Thinking Machines
Corporation. In the period before 1986 a few of my projects received
incidental support from various parts of the U.S. government, and I
made use of early workstation computers given to me by Sun
Microsystems. The MacArthur Fellowship that I received in May
1981 was an important element of personal support, and in fact it
was a few months after this award that I made the decision to focus
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my work towards what would eventually become the new kind of
science in this book.

In the early years of the project—and before I became independent
of academia—there were a number of individuals who showed
particular foresight in arranging for organizational support or
publication of my work, including: George Bell, Bill Brinkman, Roger
Dashen, Marvin Denicoff, Herman Feschbach, John Gage, Murray
Gell-Mann, Paul Halmos, Sheryl Handler, Danny Hillis, Bob
Kraichnan, Oscar Lanford, Joel Lebowitz, Elliott Lieb, John Maddox,
K. K. Phua, David Pines, Gian-Carlo Rota, Mike Schlesinger, Ralph
Simmons, Larry Smarr, Harry Woolf.

Many influences early in my life are no doubt reflected in one way or
another in this book. That my mother was an Oxford philosophy don
caused me in my youth to be exposed to a certain amount of academic
philosophy. My classical English education—in elementary school
(Dragon School) and high school (Eton)—emphasized such pursuits
as writing, and exposed me to a certain range of subjects, a remarkable
fraction of which have ended up being useful, especially in the
historical research for this book. My brief times in college (Oxford) and
graduate school (Caltech) enhanced my enthusiasm and confidence in
science, and allowed me rapidly to begin life as a professional scientist.
In the years that I was a member of the theoretical physics community
a great many people provided encouragement, and contributed to my
understanding of science and how it should be done. Among those
friends, colleagues, teachers and others from before 1981 from whom I
learned things relevant for the methods, content or writing of this
book were: Ed Berger, Euan Cameron, Chris Cole, Armand D’Angour,
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Richard Feynman, Rick Field, Geoffrey Fox, Philip Gladstone, Nathan
Isgur, Nicholas Kermack, Rocky Kolb, Chris Llewellyn Smith, David
Longrigg, Rob Pike, David Politzer, Dick Roberts, Norman Routledge,
George Rutter, Ken Spencer, Christopher Stuart-Clark, Tony Terrano,
Tini Veltman, Peregrine Williams, Hugo Wolfram, Sybil Wolfram, Larry
Yaffe, George Zweig.

To complete a project of the magnitude of this book requires extreme
personal focus. And to maintain this, I have for most of the past
decade been an almost complete recluse, attending almost no
outside events, and interacting mainly just with family, friends,
assistants and senior staff at my company. During this period it has
nevertheless provided important encouragement to see that even
without my personal presence, my earlier work in science—and even
more so my work on Mathematica—has had an increasingly great
impact on the world. It has also been a continuing source of further
encouragement to see just how broadly and deeply the worldwide
Mathematica community has been able to make use of the
fundamental ideas that I have embodied in Mathematica.

To write this book has taken me more than ten years of almost
continuous work, more than a hundred million keystrokes, and more
than a hundred mouse miles. I have accumulated tens of gigabytes
and hundreds of thousands of pages of Mathematica notebooks. I
have executed nearly a million lines of Mathematica input, and
altogether more than a million billion computer operations. But now
that the task is finally done—and I have written down at least the
main elements of my discoveries so far—I look forward to everything
that is now possible.









The Foundations for a
New Kind of Science

An Outline of Basic Ideas

Three centuries ago science was transformed by the dramatic new idea
that rules based on mathematical equations could be used to describe
the natural world. My purpose in this book is to initiate another such
transformation, and to introduce a new kind of science that is based on
the much more general types of rules that can be embodied in simple
computer programs.

It has taken me the better part of twenty years to build the
intellectual structure that is needed, but I have been amazed by its
results. For what I have found is that with the new kind of science I
have developed it suddenly becomes possible to make progress on a
remarkable range of fundamental issues that have never successfully
been addressed by any of the existing sciences before.

If theoretical science is to be possible at all, then at some level
the systems it studies must follow definite rules. Yet in the past
throughout the exact sciences it has usually been assumed that these
rules must be ones based on traditional mathematics. But the crucial
realization that led me to develop the new kind of science in this book
is that there is in fact no reason to think that systems like those we see
in nature should follow only such traditional mathematical rules.

Earlier in history it might have been difficult to imagine what

more general types of rules could be like. But today we are surrounded
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by computers whose programs in effect implement a huge variety of
rules. The programs we use in practice are mostly based on extremely
complicated rules specifically designed to perform particular tasks. But
a program can in principle follow essentially any definite set of rules.
And at the core of the new kind of science that I describe in this book
are discoveries I have made about programs with some of the very
simplest rules that are possible.

One might have thought—as at first I certainly did—that if the
rules for a program were simple then this would mean that its behavior
must also be correspondingly simple. For our everyday experience in
building things tends to give us the intuition that creating complexity is
somehow difficult, and requires rules or plans that are themselves
complex. But the pivotal discovery that I made some eighteen years ago is
that in the world of programs such intuition is not even close to correct.

I did what is in a sense one of the most elementary imaginable
computer experiments: I took a sequence of simple programs and then
systematically ran them to see how they behaved. And what I found—
to my great surprise—was that despite the simplicity of their rules, the
behavior of the programs was often far from simple. Indeed, even some
of the very simplest programs that I looked at had behavior that was as
complex as anything I had ever seen.

It took me more than a decade to come to terms with this result,
and to realize just how fundamental and far-reaching its consequences
are. In retrospect there is no reason the result could not have been found
centuries ago, but increasingly I have come to view it as one of the more
important single discoveries in the whole history of theoretical science.
For in addition to opening up vast new domains of exploration, it implies
a radical rethinking of how processes in nature and elsewhere work.

Perhaps immediately most dramatic is that it yields a resolution
to what has long been considered the single greatest mystery of the
natural world: what secret it is that allows nature seemingly so
effortlessly to produce so much that appears to us so complex.

It could have been, after all, that in the natural world we would
mostly see forms like squares and circles that we consider simple. But
in fact one of the most striking features of the natural world is that



THE FOUNDATIONS FOR A NEW KIND OF SCIENCE ‘ CHAPTER |

across a vast range of physical, biological and other systems we are
continually confronted with what seems to be immense complexity.
And indeed throughout most of history it has been taken almost for
granted that such complexity—being so vastly greater than in the works
of humans—could only be the work of a supernatural being.

But my discovery that many very simple programs produce great
complexity immediately suggests a rather different explanation. For all
it takes is that systems in nature operate like typical programs and then
it follows that their behavior will often be complex. And the reason that
such complexity is not usually seen in human artifacts is just that in
building these we tend in effect to use programs that are specially
chosen to give only behavior simple enough for us to be able to see that
it will achieve the purposes we want.

One might have thought that with all their successes over the
past few centuries the existing sciences would long ago have managed
to address the issue of complexity. But in fact they have not. And indeed
for the most part they have specifically defined their scope in order to
avoid direct contact with it. For while their basic idea of describing
behavior in terms of mathematical equations works well in cases like
planetary motion where the behavior is fairly simple, it almost
inevitably fails whenever the behavior is more complex. And more or
less the same is true of descriptions based on ideas like natural selection
in biology. But by thinking in terms of programs the new kind of
science that I develop in this book is for the first time able to make
meaningful statements about even immensely complex behavior.

In the existing sciences much of the emphasis over the past
century or so has been on breaking systems down to find their
underlying parts, then trying to analyze these parts in as much detail as
possible. And particularly in physics this approach has been sufficiently
successful that the basic components of everyday systems are by now
completely known. But just how these components act together to
produce even some of the most obvious features of the overall behavior
we see has in the past remained an almost complete mystery. Within
the framework of the new kind of science that I develop in this book,
however, it is finally possible to address such a question.
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From the tradition of the existing sciences one might expect that
its answer would depend on all sorts of details, and be quite different for
different types of physical, biological and other systems. But in the
world of simple programs I have discovered that the same basic forms of
behavior occur over and over again almost independent of underlying
details. And what this suggests is that there are quite universal
principles that determine overall behavior and that can be expected to
apply not only to simple programs but also to systems throughout the
natural world and elsewhere.

In the existing sciences whenever a phenomenon is encountered
that seems complex it is taken almost for granted that the phenomenon
must be the result of some underlying mechanism that is itself
complex. But my discovery that simple programs can produce great
complexity makes it clear that this is not in fact correct. And indeed in
the later parts of this book I will show that even remarkably simple
programs seem to capture the essential mechanisms responsible for all
sorts of important phenomena that in the past have always seemed far
too complex to allow any simple explanation.

It is not uncommon in the history of science that new ways of
thinking are what finally allow longstanding issues to be addressed. But
I have been amazed at just how many issues central to the foundations
of the existing sciences I have been able to address by using the idea of
thinking in terms of simple programs. For more than a century, for
example, there has been confusion about how thermodynamic behavior
arises in physics. Yet from my discoveries about simple programs I have
developed a quite straightforward explanation. And in biology, my
discoveries provide for the first time an explicit way to understand just
how it is that so many organisms exhibit such great complexity. Indeed,
I even have increasing evidence that thinking in terms of simple
programs will make it possible to construct a single truly fundamental
theory of physics, from which space, time, quantum mechanics and all
the other known features of our universe will emerge.

When mathematics was introduced into science it provided for
the first time an abstract framework in which scientific conclusions

could be drawn without direct reference to physical reality. Yet despite
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all its development over the past few thousand years mathematics itself
has continued to concentrate only on rather specific types of abstract
systems—most often ones somehow derived from arithmetic or
geometry. But the new kind of science that I describe in this book
introduces what are in a sense much more general abstract systems,
based on rules of essentially any type whatsoever.

One might have thought that such systems would be too diverse
for meaningful general statements to be made about them. But the
crucial idea that has allowed me to build a unified framework for the
new kind of science that I describe in this book is that just as the rules
for any system can be viewed as corresponding to a program, so also its
behavior can be viewed as corresponding to a computation.

Traditional intuition might suggest that to do more sophisticated
computations would always require more sophisticated underlying
rules. But what launched the whole computer revolution is the
remarkable fact that universal systems with fixed underlying rules can
be built that can in effect perform any possible computation.

The threshold for such universality has however generally been
assumed to be high, and to be reached only by elaborate and special
systems like typical electronic computers. But one of the surprising
discoveries in this book is that in fact there are systems whose rules are
simple enough to describe in just one sentence that are nevertheless
universal. And this immediately suggests that the phenomenon of
universality is vastly more common and important—in both abstract
systems and nature—than has ever been imagined before.

But on the basis of many discoveries I have been led to a still
more sweeping conclusion, summarized in what I call the Principle of
Computational Equivalence: that whenever one sees behavior that is
not obviously simple—in essentially any system—it can be thought of
as corresponding to a computation of equivalent sophistication. And
this one very basic principle has a quite unprecedented array of
implications for science and scientific thinking.

For a start, it immediately gives a fundamental explanation for
why simple programs can show behavior that seems to us complex. For
like other processes our own processes of perception and analysis can be
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thought of as computations. But though we might have imagined that
such computations would always be vastly more sophisticated than
those performed by simple programs, the Principle of Computational
Equivalence implies that they are not. And it is this equivalence
between us as observers and the systems that we observe that makes
the behavior of such systems seem to us complex.

One can always in principle find out how a particular system will
behave just by running an experiment and watching what happens. But
the great historical successes of theoretical science have typically
revolved around finding mathematical formulas that instead directly
allow one to predict the outcome. Yet in effect this relies on being able
to shortcut the computational work that the system itself performs.

And the Principle of Computational Equivalence now implies
that this will normally be possible only for rather special systems with
simple behavior. For other systems will tend to perform computations
that are just as sophisticated as those we can do, even with all our
mathematics and computers. And this means that such systems are
computationally irreducible—so that in effect the only way to find their
behavior is to trace each of their steps, spending about as much
computational effort as the systems themselves.

So this implies that there is in a sense a fundamental limitation
to theoretical science. But it also shows that there is something
irreducible that can be achieved by the passage of time. And it leads to
an explanation of how we as humans—even though we may follow
definite underlying rules—can still in a meaningful way show free will.

One feature of many of the most important advances in science
throughout history is that they show new ways in which we as humans
are not special. And at some level the Principle of Computational
Equivalence does this as well. For it implies that when it comes to
computation—or intelligence—we are in the end no more sophisticated
than all sorts of simple programs, and all sorts of systems in nature.

But from the Principle of Computational Equivalence there also

emerges a new kind of unity: for across a vast range of systems, from
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simple programs to brains to our whole universe, the principle implies
that there is a basic equivalence that makes the same fundamental
phenomena occur, and allows the same basic scientific ideas and
methods to be used. And it is this that is ultimately responsible for the
great power of the new kind of science that I describe in this book.

Relations to Other Areas

Mathematics. It is usually assumed that mathematics concerns itself
with the study of arbitrarily general abstract systems. But this book
shows that there are actually a vast range of abstract systems based on
simple programs that traditional mathematics has never considered.
And because these systems are in many ways simpler in construction
than most traditional systems in mathematics it is possible with
appropriate methods in effect to go further in investigating them.

Some of what one finds are then just unprecedentedly clear
examples of phenomena already known in modern mathematics. But
one also finds some dramatic new phenomena. Most immediately
obvious is a very high level of complexity in the behavior of many
systems whose underlying rules are much simpler than those of most
systems in standard mathematics textbooks.

And one of the consequences of this complexity is that it leads to
fundamental limitations on the idea of proof that has been central to
traditional mathematics. Already in the 1930s Go6del’s Theorem gave
some indications of such limitations. But in the past they have always
seemed irrelevant to most of mathematics as it is actually practiced.

Yet what the discoveries in this book show is that this is largely
just a reflection of how small the scope is of what is now considered
mathematics. And indeed the core of this book can be viewed as
introducing a major generalization of mathematics—with new ideas
and methods, and vast new areas to be explored.

The framework I develop in this book also shows that by viewing
the process of doing mathematics in fundamentally computational
terms it becomes possible to address important issues about the

foundations even of existing mathematics.
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Physics. The traditional mathematical approach to science has
historically had its great success in physics—and by now it has become
almost universally assumed that any serious physical theory must be
based on mathematical equations. Yet with this approach there are still
many common physical phenomena about which physics has had
remarkably little to say. But with the approach of thinking in terms of
simple programs that I develop in this book it finally seems possible to
make some dramatic progress. And indeed in the course of the book we
will see that some extremely simple programs seem able to capture the
essential mechanisms for a great many physical phenomena that have
previously seemed completely mysterious.

Existing methods in theoretical physics tend to revolve around
ideas of continuous numbers and calculus—or sometimes probability.
Yet most of the systems in this book involve just simple discrete
elements with definite rules. And in many ways it is the greater
simplicity of this underlying structure that ultimately makes it possible
to identify so many fundamentally new phenomena.

Ordinary models for physical systems are idealizations that
capture some features and ignore others. And in the past what was most
common was to capture certain simple numerical relationships—that
could for example be represented by smooth curves. But with the new
kinds of models based on simple programs that I explore in this book it
becomes possible to capture all sorts of much more complex features
that can only really be seen in explicit images of behavior.

In the future of physics the greatest triumph would undoubtedly
be to find a truly fundamental theory for our whole universe. Yet
despite occasional optimism, traditional approaches do not make this
seem close at hand. But with the methods and intuition that I develop
in this book there is I believe finally a serious possibility that such a

theory can actually be found.

Biology. Vast amounts are now known about the details of biological
organisms, but very little in the way of general theory has ever emerged.
Classical areas of biology tend to treat evolution by natural selection as
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a foundation—leading to the notion that general observations about
living systems should normally be analyzed on the basis of evolutionary
history rather than abstract theories. And part of the reason for this is
that traditional mathematical models have never seemed to come even
close to capturing the kind of complexity we see in biology. But the
discoveries in this book show that simple programs can produce a high
level of complexity. And in fact it turns out that such programs can
reproduce many features of biological organisms—and for example
seem to capture some of the essential mechanisms through which
genetic programs manage to generate the actual biological forms we see.
So this means that it becomes possible to make a wide range of new
models for biological systems—and potentially to see how to emulate
the essence of their operation, say for medical purposes. And insofar as
there are general principles for simple programs, these principles should
also apply to biological organisms—making it possible to imagine

constructing new kinds of general abstract theories in biology.

Social Sciences. From economics to psychology there has been a
widespread if controversial assumption—no doubt from the success of
the physical sciences—that solid theories must always be formulated in
terms of numbers, equations and traditional mathematics. But I suspect
that one will often have a much better chance of capturing fundamental
mechanisms for phenomena in the social sciences by using instead the
new kind of science that I develop in this book based on simple
programs. No doubt there will quite quickly be all sorts of claims about
applications of my ideas to the social sciences. And indeed the new
intuition that emerges from this book may well almost immediately
explain phenomena that have in the past seemed quite mysterious. But
the very results of the book show that there will inevitably be
fundamental limits to the application of scientific methods. There will
be new questions formulated, but it will take time before it becomes
clear when general theories are possible, and when one must instead
inevitably rely on the details of judgement for specific cases.
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Computer Science. Throughout its brief history computer science has
focused almost exclusively on studying specific computational systems
set up to perform particular tasks. But one of the core ideas of this book
is to consider the more general scientific question of what arbitrary
computational systems do. And much of what I have found is vastly
different from what one might expect on the basis of existing computer
science. For the systems traditionally studied in computer science tend
to be fairly complicated in their construction—yet yield fairly simple
behavior that recognizably fulfills some particular purpose. But in this
book what I show is that even systems with extremely simple
construction can yield behavior of immense complexity. And by
thinking about this in computational terms one develops a new
intuition about the very nature of computation.

One consequence is a dramatic broadening of the domain to
which computational ideas can be applied—in particular to include all
sorts of fundamental questions about nature and about mathematics.
Another consequence is a new perspective on existing questions in
computer science—particularly ones related to what ultimate resources

are needed to perform general types of computational tasks.

Philosophy. At any period in history there are issues about the universe
and our role in it that seem accessible only to the general arguments of
philosophy. But often progress in science eventually provides a more
definite context. And I believe that the new kind of science in this book
will do this for a variety of issues that have been considered
fundamental even since antiquity. Among them are questions about
ultimate limits to knowledge, free will, the uniqueness of the human
condition and the inevitability of mathematics. Much has been said
over the course of philosophical history about each of these. Yet
inevitably it has been informed only by current intuition about how
things are supposed to work. But my discoveries in this book lead to
radically new intuition. And with this intuition it turns out that one
can for the first time begin to see resolutions to many longstanding
issues—typically along rather different lines from those expected on the

basis of traditional general arguments in philosophy.
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Art. It seems so easy for nature to produce forms of great beauty. Yet in
the past art has mostly just had to be content to imitate such forms. But
now, with the discovery that simple programs can capture the essential
mechanisms for all sorts of complex behavior in nature, one can
imagine just sampling such programs to explore generalizations of the
forms we see in nature. Traditional scientific intuition—and early
computer art—might lead one to assume that simple programs would
always produce pictures too simple and rigid to be of artistic interest.
But looking through this book it becomes clear that even a program that
may have extremely simple rules will often be able to generate pictures
that have striking aesthetic qualities—sometimes reminiscent of

nature, but often unlike anything ever seen before.

Technology. Despite all its success, there is still much that goes on in
nature that seems more complex and sophisticated than anything
technology has ever been able to produce. But what the discoveries in
this book now show is that by using the types of rules embodied in
simple programs one can capture many of the essential mechanisms of
nature. And from this it becomes possible to imagine a whole new kind
of technology that in effect achieves the same sophistication as nature.
Experience with traditional engineering has led to the general
assumption that to perform a sophisticated task requires constructing a
system whose basic rules are somehow correspondingly complicated.
But the discoveries in this book show that this is not the case, and that
in fact extremely simple underlying rules—that might for example
potentially be implemented directly at the level of atoms—are often all
that is needed. My main focus in this book is on matters of basic
science. But I have little doubt that within a matter of a few decades
what I have done will have led to some dramatic changes in the
foundations of technology—and in our basic ability to take what the

universe provides and apply it for our own human purposes.
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Some Past Initiatives

My goals in this book are sufficiently broad and fundamental that there
have inevitably been previous attempts to achieve at least some of
them. But without the ideas and methods of this book there have been
basic issues that have eventually ended up presenting almost

insuperable barriers to every major approach that has been tried.

Artificial Intelligence. When electronic computers were first invented,
it was widely believed that it would not be long before they would be
capable of human-like thinking. And in the 1960s the field of artificial
intelligence grew up with the goal of understanding processes of human
thinking and implementing them on computers. But doing this turned
out to be much more difficult than expected, and after some spin-offs,
little fundamental progress was made. At some level, however, the
basic problem has always been to understand how the seemingly simple
components in a brain can lead to all the complexities of thinking. But
now finally with the framework developed in this book one potentially
has a meaningful foundation for doing this. And indeed building on
both theoretical and practical ideas in the book I suspect that dramatic
progress will eventually be possible in creating technological systems

that are capable of human-like thinking.

Artificial Life. Ever since machines have existed, people have wondered
to what extent they might be able to imitate living systems. Most
active from the mid-1980s to the mid-1990s, the field of artificial life
concerned itself mainly with showing that computer programs could be
made to emulate various features of biological systems. But normally it
was assumed that the necessary programs would have to be quite
complex. What the discoveries in this book show, however, is that in
fact very simple programs can be sufficient. And such programs make
the fundamental mechanisms for behavior clearer—and probably come
much closer to what is actually happening in real biological systems.

Catastrophe Theory. Traditional mathematical models are normally
based on quantities that vary continuously. Yet in nature discrete

changes are often seen. Popular in the 1970s, catastrophe theory was
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concerned with showing that even in traditional mathematical models,
certain simple discrete changes could still occur. In this book I do not
start from any assumption of continuity—and the types of behavior I

study tend to be vastly more complex than those in catastrophe theory.

Chaos Theory. The field of chaos theory is based on the observation
that certain mathematical systems behave in a way that depends
arbitrarily sensitively on the details of their initial conditions. First
noticed at the end of the 1800s, this came into prominence after
computer simulations in the 1960s and 1970s. Its main significance is
that it implies that if any detail of the initial conditions is uncertain,
then it will eventually become impossible to predict the behavior of the
system. But despite some claims to the contrary in popular accounts,
this fact alone does not imply that the behavior will necessarily be
complex. Indeed, all that it shows is that if there is complexity in the
details of the initial conditions, then this complexity will eventually
appear in the large-scale behavior of the system. But if the initial
conditions are simple, then there is no reason for the behavior not to be
correspondingly simple. What I show in this book, however, is that
even when their initial conditions are very simple there are many
systems that still produce highly complex behavior. And I argue that it
is this phenomenon that is for example responsible for most of the

obvious complexity we see in nature.

Complexity Theory. My discoveries in the early 1980s led me to the
idea that complexity could be studied as a fundamental independent
phenomenon. And gradually this became quite popular. But most of the
scientific work that was done ended up being based only on my earliest
discoveries, and being very much within the framework of one or
another of the existing sciences—with the result that it managed to
make very little progress on any general and fundamental issues. One
feature of the new kind of science that I describe in this book is that it
finally makes possible the development of a basic understanding of the
general phenomenon of complexity, and its origins.
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Computational Complexity Theory. Developed mostly in the 1970s,
computational complexity theory attempts to characterize how
difficult certain computational tasks are to perform. Its concrete results
have tended to be based on fairly specific programs with complicated
structure yet rather simple behavior. The new kind of science in this
book, however, explores much more general classes of programs—and
in doing so begins to shed new light on various longstanding questions

in computational complexity theory.

Cybernetics. In the 1940s it was thought that it might be possible to
understand biological systems on the basis of analogies with electrical
machines. But since essentially the only methods of analysis available
were ones from traditional mathematics, very little of the complex
behavior of typical biological systems was successfully captured.

Dynamical Systems Theory. A branch of mathematics that began
roughly a century ago, the field of dynamical systems theory has been
concerned with studying systems that evolve in time according to
certain kinds of mathematical equations—and in using traditional
geometrical and other mathematical methods to characterize the
possible forms of behavior that such systems can produce. But what I
argue in this book is that in fact the behavior of many systems is

fundamentally too complex to be usefully captured in any such way.

Evolution Theory. The Darwinian theory of evolution by natural
selection is often assumed to explain the complexity we see in
biological systems—and in fact in recent years the theory has also
increasingly been applied outside of biology. But it has never been at all
clear just why this theory should imply that complexity is generated.
And indeed I will argue in this book that in many respects it tends to
oppose complexity. But the discoveries in the book suggest a new and
quite different mechanism that I believe is in fact responsible for most
of the examples of great complexity that we see in biology.

Experimental Mathematics. The idea of exploring mathematical
systems by looking at data from calculations has a long history, and has
gradually become more widespread with the advent of computers and
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Mathematica. But almost without exception, it has in the past only been
applied to systems and questions that have already been investigated by
other mathematical means—and that lie very much within the normal
tradition of mathematics. My approach in this book, however, is to use
computer experiments as a basic way to explore much more general
systems—that have never arisen in traditional mathematics, and that

are usually far from being accessible by existing mathematical means.

Fractal Geometry. Until recently, the only kinds of shapes widely
discussed in science and mathematics were ones that are regular or
smooth. But starting in the late 1970s, the field of fractal geometry
emphasized the importance of nested shapes that contain arbitrarily
intricate pieces, and argued that such shapes are common in nature. In
this book we will encounter a fair number of systems that produce such
nested shapes. But we will also find many systems that produce shapes

which are much more complex, and have no nested structure.

General Systems Theory. Popular especially in the 1960s, general
systems theory was concerned mainly with studying large networks of
elements—often idealizing human organizations. But a complete lack
of anything like the kinds of methods I use in this book made it almost

impossible for any definite conclusions to emerge.

Nanotechnology. Growing rapidly since the early 1990s, the goal of
nanotechnology is to implement technological systems on atomic
scales. But so far nanotechnology has mostly been concerned with
shrinking quite familiar mechanical and other devices. Yet what the
discoveries in this book now show is that there are all sorts of systems
that have much simpler structures, but that can nevertheless perform
very sophisticated tasks. And some of these systems seem in many

ways much more suitable for direct implementation on an atomic scale.

Nonlinear Dynamics. Mathematical equations that have the property
of linearity are usually fairly easy to solve, and so have been used
extensively in pure and applied science. The field of nonlinear
dynamics is concerned with analyzing more complicated equations. Its

greatest success has been with so-called soliton equations for which
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careful manipulation leads to a property similar to linearity. But the
kinds of systems that I discuss in this book typically show much more
complex behavior, and have no such simplifying properties.

Scientific Computing. The field of scientific computing has usually
been concerned with taking traditional mathematical models—most
often for various kinds of fluids and solids—and trying to implement
them on computers using numerical approximation schemes. Typically
it has been difficult to disentangle anything but fairly simple
phenomena from effects associated with the approximations used. The
kinds of models that I introduce in this book involve no approximations
when implemented on computers, and thus readily allow one to

recognize much more complex phenomena.

Self-Organization. In nature it is quite common to see systems that start
disordered and featureless, but then spontaneously organize themselves
to produce definite structures. The loosely knit field of self-organization
has been concerned with understanding this phenomenon. But for the
most part it has used traditional mathematical methods, and as a result
has only been able to investigate the formation of fairly simple structures.
With the ideas in this book, however, it becomes possible to understand

how vastly more complex structures can be formed.

Statistical Mechanics. Since its development about a century ago, the
branch of physics known as statistical mechanics has mostly concerned
itself with understanding the average behavior of systems that consist
of large numbers of gas molecules or other components. In any specific
instance, such systems often behave in a complex way. But by looking
at averages over many instances, statistical mechanics has usually
managed to avoid such complexity. To make contact with real
situations, however, it has often had to use the so-called Second Law of
Thermodynamics, or Principle of Entropy Increase. But for more than a
century there have been nagging difficulties in understanding the basis
for this principle. With the ideas in this book, however, I believe that
there is now a framework in which these can finally be resolved.
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The Personal Story of the Science in This Book

I can trace the beginning of my serious interest in the kinds of scientific
issues discussed in this book rather accurately to the summer of 1972,
when I was twelve years old. I had bought a copy of the physics
textbook on the right, and had become very curious about the process of
randomization illustrated on its cover. But being far from convinced by
the mathematical explanation given in the book, I decided to try to
simulate the process for myself on a computer.

The computer to which I had access at that time was by modern
standards a very primitive one. And as a result, I had no choice but to
study a very simplified version of the process in the book. I suspected
from the start that the system I constructed might be too simple to
show any of the phenomena I wanted. And after much programming
effort I managed to convince myself that these suspicions were correct.

Yet as it turns out, what I looked at was a particular case of one of
the main kinds of systems—cellular automata—that I consider in this
book. And had it not been for a largely technical point that arose from
my desire to make my simulations as physically realistic as possible, it
is quite possible that by 1974 I would already have discovered some of
the principal phenomena that I now describe in this book.

As it was, however, I decided at that time to devote my energies
to what then seemed to be the most fundamental area of science:
theoretical particle physics. And over the next several years I did indeed
manage to make significant progress in a few areas of particle physics
and cosmology. But after a while I began to suspect that many of the
most important and fundamental questions that I was encountering
were quite independent of the abstruse details of these fields.

And in fact I realized that there were many related questions even
about common everyday phenomena that were still completely
unanswered. What for example is the fundamental origin of the
complicated patterns that one sees in turbulent fluids? How are the
intricate patterns of snowflakes produced? What is the basic mechanism
that allows plants and animals to grow in such complex ways?

CHAPTER 1
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To my surprise, very little seemed to have been done on these
kinds of questions. At first I thought it might be possible to make
progress just by applying some of the sophisticated mathematical
techniques that I had used in theoretical physics. But it soon became
clear that for the phenomena I was studying, traditional mathematical
results would be very difficult, if not impossible, to find.

So what could I do? It so happened that as an outgrowth of my
work in physics I had in 1981 just finished developing a large software
system that was in some respects a forerunner to parts of Mathematica.
And at least at an intellectual level the most difficult part of the project
had been designing the symbolic language on which the system was
based. But in the development of this language I had seen rather clearly
how just a few primitive operations that I had come up with could end up
successfully covering a vast range of sophisticated computational tasks.

So I thought that perhaps I could do something similar in natural
science: that there might be some appropriate primitives that I could
find that would successfully capture a vast range of natural phenomena.
My ideas were not so clearly formed at the time, but I believe I
implicitly imagined that the way this would work is that such
primitives could be used to build up computer programs that would
simulate the various natural systems in which I was interested.

There were in many cases well-established mathematical models
for the individual components of such systems. But two practical issues
stood in the way of using these as a basis for simulations. First, the
models were usually quite complicated, so that with realistic computer
resources it was very difficult to include enough components for
interesting phenomena to occur. And second, even if one did see such
phenomena, it was almost impossible to tell whether in fact they were
genuine consequences of the underlying models or were just the result
of approximations made in implementing the models on a computer.

But what I realized was that at least for many of the phenomena I
wanted to study, it was not crucial to use the most accurate possible
models for individual components. For among other things there was
evidence from nature that in many cases the details of the components
did not matter much—so that for example the same complex patterns
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of flow occur in both air and water. And with this in mind, what I
decided was that rather than starting from detailed realistic models, I
would instead start from models that were somehow as simple as
possible—and were easy to set up as programs on a computer.

At the outset, I did not know how this would work, and how
complicated the programs I would need would have to be. And indeed
when I looked at various simple programs they always seemed to yield
behavior vastly simpler than any of the systems I wanted to study.

But in the summer of 1981 I did what I considered to be a fairly
straightforward computer experiment to see how all programs of a
particular type behaved. I had not really expected too much from this
experiment. But in fact its results were so surprising and dramatic that
as I gradually came to understand them, they forced me to change my
whole view of science, and in the end to develop the whole intellectual
structure of the new kind of science that I now describe in this book.

The picture on the right shows a reproduction of typical output
from my original experiment. The graphics are primitive, but the
elaborate patterns they contain were like nothing I had ever seen before.
At first I did not believe that they could possibly be correct. But after a
while I became convinced that they were—and I realized that I had seen
a sign of a quite remarkable and unexpected phenomenon: that even
from very simple programs behavior of great complexity could emerge.

But how could something as fundamental as this never have been
noticed before? I searched the scientific literature, talked to many
people, and found out that systems similar to the ones I was studying
had been named “cellular automata” some thirty years earlier. But
despite a few close approaches, nobody had ever actually tried anything
quite like the type of experiment I had.

Yet I still suspected that the basic phenomenon I had seen must
somehow be an obvious consequence of some known scientific principle.
But while I did find that ideas from areas like chaos theory and fractal
geometry helped in explaining some specific features, nothing even close
to the phenomenon as a whole seemed to have ever been studied before.

My early discoveries about the behavior of cellular automata
stimulated a fair amount of activity in the scientific community. And

A reproduction of the computer
printout that first gave me a
hint of some of the central
phenomena in this book.
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by the mid-1980s, many applications had been found in physics,
biology, computer science, mathematics and elsewhere. And indeed
some of the phenomena I had discovered were starting to be used as the
basis for a new area of research that I called complex systems theory.

Throughout all this, however, I had continued to investigate
more basic questions, and by around 1985 I was beginning to realize
that what I had seen before was just a hint of something still much
more dramatic and fundamental. But to understand what I was
discovering was difficult, and required a major shift in intuition.

Yet I could see that there were some remarkable intellectual
opportunities ahead. And my first idea was to try to organize the
academic community to take advantage of them. So I started a research
center and a journal, published a list of problems to attack, and worked
hard to communicate the importance of the direction I was defining.

But despite growing excitement—particularly about some of the
potential applications—there seemed to be very little success in
breaking away from traditional methods and intuition. And after a while
I realized that if there was going to be any dramatic progress made, I was
the one who was going to have to make it. So I resolved to set up the
best tools and infrastructure I could, and then just myself pursue as
efficiently as possible the research that I thought should be done.

In the early 1980s my single greatest impediment had been the
practical difficulty of doing computer experiments using the various
rather low-level tools that were available. But by 1986 I had realized that
with a number of new ideas I had it would be possible to build a single
coherent system for doing all kinds of technical computing. And since
nothing like this seemed likely to exist otherwise, I decided to build it.

The result was Mathematica.

For five years the process of building Mathematica and the
company around it absorbed me. But in 1991—now no longer an
academic, but instead the CEO of a successful company—I was able to
return to studying the kinds of questions addressed in this book.

And equipped with Mathematica 1 began to try all sorts of new
experiments. The results were spectacular—and within the space of a
few months I had already made more new discoveries about what
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simple programs do than in all the previous ten years put together. My
earlier work had shown me the beginnings of some unexpected and very
remarkable phenomena. But now from my new experiments I began to
see the full force and generality of these phenomena.

As my methodology and intuition improved, the pace of my
discoveries increased still more, and within just a couple of years I had
managed to take my explorations of the world of simple programs to the
point where the sheer volume of factual information I had accumulated
would be the envy of many long-established fields of science.

Quite early in the process I had begun to formulate several rather
general principles. And the further I went, the more these principles were
confirmed, and the more I realized just how strong and general they were.

When I first started at the beginning of the 1980s, my goal was
mostly just to understand the phenomenon of complexity. But by the
mid-1990s I had built up a whole intellectual structure that was capable
of much more, and that in fact provided the foundations for what could
only be considered a fundamentally new kind of science.

It was for me a most exciting time. For everywhere I turned there
were huge untouched new areas that I was able to explore for the first
time. Each had its own particular features. But with the overall
framework I had developed I was gradually able to answer essentially all
of what seemed to be the most obvious questions that I had raised.

At first I was mostly concerned with new questions that had never
been particularly central to any existing areas of science. But gradually I
realized that the new kind of science I was building should also provide a
fundamentally new way to address basic issues in existing areas.

So around 1994 I began systematically investigating each of the
various major traditional areas of science. I had long been interested in
fundamental questions in many of these areas. But usually I had tended to
believe most of the conventional wisdom about them. Yet when I began
to study them in the context of my new kind of science I kept on seeing
signs that large parts of this conventional wisdom could not be correct.

The typical issue was that there was some core problem that
traditional methods or intuition had never successfully been able to
address—and which the field had somehow grown to avoid. Yet over
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and over again I was excited to find that with my new kind of science I
could suddenly begin to make great progress—even on problems that in
some cases had remained unanswered for centuries.

Given the whole framework I had built, many of the things I
discovered seemed in the end disarmingly simple. But to get to them
often involved a remarkable amount of scientific work. For it was not
enough just to be able to take a few specific technical steps. Rather, in
each field, it was necessary to develop a sufficiently broad and deep
understanding to be able to identify the truly essential features—that
could then be rethought on the basis of my new kind of science.

Doing this certainly required experience in all sorts of different
areas of science. But perhaps most crucial for me was that the process
was a bit like what I have ended up doing countless times in designing
Mathematica: start from elaborate technical ideas, then gradually see
how to capture their essential features in something amazingly simple.
And the fact that I had managed to make this work so many times in
Mathematica was part of what gave me the confidence to try doing
something similar in all sorts of areas of science.

Often it seemed in retrospect almost bizarre that the conclusions
I ended up reaching had never been reached before. But studying the
history of each field I could in many cases see how it had been led astray
by the lack of some crucial piece of methodology or intuition that had
now emerged in the new kind of science I had developed.

When I made my first discoveries about cellular automata in the
early 1980s I suspected that I had seen the beginning of something
important. But I had no idea just how important it would all ultimately
turn out to be. And indeed over the past twenty years I have made more
discoveries than I ever thought possible. And the new kind of science
that T have spent so much effort building has seemed an ever more

central and critical direction for future intellectual development.
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How Do Simple Programs Behave?

New directions in science have typically been initiated by certain
central observations or experiments. And for the kind of science that I
describe in this book these concerned the behavior of simple programs.

In our everyday experience with computers, the programs that we
encounter are normally set up to perform very definite tasks. But the key
idea that I had nearly twenty years ago—and that eventually led to the
whole new kind of science in this book—was to ask what happens if one
instead just looks at simple arbitrarily chosen programs, created without
any specific task in mind. How do such programs typically behave?

The mathematical methods that have in the past dominated
theoretical science do not help much with such a question. But with a
computer it is straightforward to start doing experiments to investigate
it. For all one need do is just set up a sequence of possible simple
programs, and then run them and see how they behave.

Any program can at some level be thought of as consisting of a set
of rules that specify what it should do at each step. There are many
possible ways to set up these rules—and indeed we will study quite a
few of them in the course of this book. But for now, I will consider a
particular class of examples called cellular automata, that were the very
first kinds of simple programs that I investigated in the early 1980s.
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An important feature of cellular automata is that their behavior
can readily be presented in a visual way. And so the picture below
shows what one cellular automaton does over the course of ten steps.

A visual representation of the behavior

of a cellular automaton, with each row step 1:
of cells corresponding to one step. At step 2:
the first step the cell in the center is step 3:
black and all other cells are white. Then step 4:
on each successive step, a particular zi:zg
cell is made black whenever it or either step 7
of its neighbors were black on the step step 8
before. As the picture shows, this leads step 9:
to a simple expanding pattern uniformly step 10:

filled with black.

The cellular automaton consists of a line of cells, each colored
either black or white. At every step there is then a definite rule that
determines the color of a given cell from the color of that cell and its
immediate left and right neighbors on the step before.

For the particular cellular automaton shown here the rule
specifies—as in the picture below—that a cell should be black in all

cases where it or either of its neighbors were black on the step before.

A representation of the rule for
HEE BN BB N (BN N (B[] the cellular automaton shown

| | | | | | | O :
above. The top row in each box

gives one of the possible combinations of colors for a cell and its immediate neighbors. The
bottom row then specifies what color the center cell should be on the next step in each of these
cases. In the numbering scheme described in Chapter 3, this is cellular automaton rule 254.

And the picture at the top of the page shows that starting with a
single black cell in the center this rule then leads to a simple growing
pattern uniformly filled with black. But modifying the rule just slightly
one can immediately get a different pattern.

As a first example, the picture at the top of the facing page shows
what happens with a rule that makes a cell white whenever both of its
neighbors were white on the step before—even if the cell itself was
black before. And rather than producing a pattern that is uniformly
filled with black, this rule now instead gives a pattern that repeatedly
alternates between black and white like a checkerboard.
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A cellular automaton with a slightly different rule. The rule
makes a particular cell black if either of its neighbors was black
on the step before, and makes the cell white if both its
neighbors were white. Starting from a single black cell, this rule
leads to a checkerboard pattern. In the numbering scheme of
Chapter 3, this is cellular automaton rule 250.

This pattern is however again fairly simple. And we might
assume that at least with the type of cellular automata that we are
considering, any rule we might choose would always give a pattern that
is quite simple. But now we are in for our first surprise.

The picture below shows the pattern produced by a cellular
automaton of the same type as before, but with a slightly different rule.

A cellular automaton that produces an intricate nested pattern. The rule in this case is
‘?‘-.:“-é-‘-i‘:“‘:.-‘%:“‘:‘i-‘%:“ that a cell should be black whenever one or the other, but not both, of its neighbors

were black on the step before. Even though the rule is very simple, the picture
shows that the overall pattern obtained over the course of 50 steps starting from a single black cell is not so simple. The particular rule
used here can be described by the formula a," = Mod(a;_, +a;,;, 2]. In the numbering scheme of Chapter 3, it is cellular automaton rule 90.
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This time the rule specifies that a cell should be black when either its
left neighbor or its right neighbor—but not both—were black on the
step before. And again this rule is undeniably quite simple. But now the
picture shows that the pattern it produces is not so simple.

And if one runs the cellular automaton for more steps, as in the
picture below, then a rather intricate pattern emerges. But one can now
see that this pattern has very definite regularity. For even though it is
intricate, one can see that it actually consists of many nested triangular
pieces that all have exactly the same form. And as the picture shows,
each of these pieces is essentially just a smaller copy of the whole
pattern, with still smaller copies nested in a very regular way inside it.

A larger version of the pattern from the previous page, now shown without a grid explicitly indicating each cell. The picture shows five
hundred steps of cellular automaton evolution. The pattern obtained is intricate, but has a definite nested structure. Indeed, as the
picture illustrates, each triangular section is essentially just a smaller copy of the whole pattern, with still smaller copies nested inside it.
Patterns with nested structure of this kind are often called “fractal” or “self-similar”

So of the three cellular automata that we have seen so far, all
ultimately yield patterns that are highly regular: the first a simple
uniform pattern, the second a repetitive pattern, and the third an
intricate but still nested pattern. And we might assume that at least for
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cellular automata with rules as simple as the ones we have been using
these three forms of behavior would be all that we could ever get.

But the remarkable fact is that this turns out to be wrong.

And the picture below shows an example of this. The rule used—
that I call rule 30—is of exactly the same kind as before, and can be
described as follows. First, look at each cell and its right-hand neighbor.
If both of these were white on the previous step, then take the new
color of the cell to be whatever the previous color of its left-hand
neighbor was. Otherwise, take the new color to be the opposite of that.

A cellular automaton with a simple rule that generates a pattern which seems
] EED‘ in many respects random. The rule used is of the same type as in the

previous examples, and the cellular automaton is again started from a single
black cell. But now the pattern that is obtained is highly complex, and shows almost no overall regularity. This picture is our first
example of the fundamental phenomenon that even with simple underlying rules and simple initial conditions, it is possible to
produce behavior of great complexity. In the numbering scheme of Chapter 3, the cellular automaton shown here is rule 30.

The picture shows what happens when one starts with just one
black cell and then applies this rule over and over again. And what one
sees is something quite startling—and probably the single most
surprising scientific discovery I have ever made. Rather than getting a
simple regular pattern as we might expect, the cellular automaton
instead produces a pattern that seems extremely irregular and complex.
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But where does this complexity come from? We certainly did not
put it into the system in any direct way when we set it up. For we just
used a simple cellular automaton rule, and just started from a simple
initial condition containing a single black cell.

Yet the picture shows that despite this, there is great complexity
in the behavior that emerges. And indeed what we have seen here is a
first example of an extremely general and fundamental phenomenon
that is at the very core of the new kind of science that I develop in this
book. Over and over again we will see the same kind of thing: that even
though the underlying rules for a system are simple, and even though
the system is started from simple initial conditions, the behavior that
the system shows can nevertheless be highly complex. And I will argue
that it is this basic phenomenon that is ultimately responsible for most
of the complexity that we see in nature.

The next two pages show progressively more steps in the
evolution of the rule 30 cellular automaton from the previous page. One
might have thought that after maybe a thousand steps the behavior
would eventually resolve into something simple. But the pictures on
the next two pages show that nothing of the sort happens.

Some regularities can nevertheless be seen. On the left-hand side,
for example, there are obvious diagonal bands. And dotted throughout
there are various white triangles and other small structures. Yet given
the simplicity of the underlying rule, one would expect vastly more
regularities. And perhaps one might imagine that our failure to see any
in the pictures on the next two pages is just a reflection of some kind of
inadequacy in the human visual system.

But it turns out that even the most sophisticated mathematical
and statistical methods of analysis seem to do no better. For example,
one can look at the sequence of colors directly below the initial black cell.
And in the first million steps in this sequence, for example, it never
repeats, and indeed none of the tests I have ever done on it show any
meaningful deviation at all from perfect randomness.

In a sense, however, there is a certain simplicity to such perfect

randomness. For even though it may be impossible to predict what
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Five hundred steps in the evolution of the rule 30 cellular automaton from page 27. The pattern produced continues to expand on both
left and right, but only the part that fits across the page is shown here. The asymmetry between the left and right-hand sides is a direct
consequence of asymmetry that exists in the particular underlying cellular automaton rule used.
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Fifteen hundred steps of rule 30 evolution. Some regularities are evident, particularly on the left. But even after all these steps there are
no signs of overall regularity—and indeed even continuing for a million steps many aspects of the pattern obtained seem perfectly
random according to standard mathematical and statistical tests. The picture here shows a total of just under two million individual cells.
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color will occur at any specific step, one still knows for example that
black and white will on average always occur equally often.

But it turns out that there are cellular automata whose behavior
is in effect still more complex—and in which even such averages
become very difficult to predict. The pictures on the next several pages
give a rather dramatic example. The basic form of the rule is just the
same as before. But now the specific rule used—that I call rule 110—
takes the new color of a cell to be black in every case except when the
previous colors of the cell and its two neighbors were all the same, or
when the left neighbor was black and the cell and its right neighbor
were both white.

The pattern obtained with this rule shows a remarkable mixture
of regularity and irregularity. More or less throughout, there is a very
regular background texture that consists of an array of small white
triangles repeating every 7 steps. And beginning near the left-hand edge,
there are diagonal stripes that occur at intervals of exactly 80 steps.

But on the right-hand side, the pattern is much less regular.
Indeed, for the first few hundred steps there is a region that seems
essentially random. But by the bottom of the first page, all that remains
of this region is three copies of a rather simple repetitive structure.

Yet at the top of the next page the arrival of a diagonal stripe from
the left sets off more complicated behavior again. And as the system
progresses, a variety of definite localized structures are produced.

Some of these structures remain stationary, like those at the
bottom of the first page, while others move steadily to the right or left
at various speeds. And on their own, each of these structures works
in a fairly simple way. But as the pictures illustrate, their various
interactions can have very complicated effects.

And as a result it becomes almost impossible to predict—even
approximately—what the cellular automaton will do.

Will all the structures that are produced eventually annihilate
each other, leaving only a very regular pattern? Or will more and more
structures appear until the whole pattern becomes quite random?

The only sure way to answer these questions, it seems, is just to
run the cellular automaton for as many steps as are needed, and to
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A cellular automaton whose behavior seems neither highly regular nor completely
-‘-I‘IZI‘IZD‘E-‘EII‘D:I‘DZD‘ random. The picture is obtained by applying the simple rule shown for a total of
g/ m m |0 m m =m0 150 steps, starting with a single black cell. Note that the particular rule used here
yields a pattern that expands on the left but not on the right. In the scheme defined

in Chapter 3, the rule is number 110.

More steps in the pattern shown above. Each successive page shows a total of 700 steps. The pattern continues to expand on the left
forever, but only the part that fits across each page is shown. For a long time it is not clear how the right-hand part of the pattern will
eventually look. But after 2780 steps, a fairly simple repetitive structure emerges. Note that to generate the pictures that follow
requires applying the underlying cellular automaton rule for individual cells a total of about 12 million times. p
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watch what happens. And as it turns out, in the particular case shown
here, the outcome is finally clear after about 2780 steps: one structure
survives, and that structure interacts with the periodic stripes coming
from the left to produce behavior that repeats every 240 steps.

However certain one might be that simple programs could never
do more than produce simple behavior, the pictures on the past few
pages should forever disabuse one of that notion. And indeed, what is
perhaps most bizarre about the pictures is just how little trace they
ultimately show of the simplicity of the underlying cellular automaton
rule that was used to produce them.

One might think, for example, that the fact that all the cells in a
cellular automaton follow exactly the same rule would mean that in
pictures like the last few pages all cells would somehow obviously be
doing the same thing. But instead, they seem to be doing quite different
things. Some of them, for example, are part of the regular background,
while others are part of one or another localized structure. And what
makes this possible is that even though individual cells follow the same
rule, different configurations of cells with different sequences of colors
can together produce all sorts of different kinds of behavior.

Looking just at the original cellular automaton rule one would
have no realistic way to foresee all of this. But by doing the appropriate
computer experiments one can easily find out what actually happens—
and in effect begin the process of exploring a whole new world of

remarkable phenomena associated with simple programs.

The Need for a New Intuition

The pictures in the previous section plainly show that it takes only very
simple rules to produce highly complex behavior. Yet at first this may
seem almost impossible to believe. For it goes against some of our most

basic intuition about the way things normally work.

4 Asingle picture of the behavior from the previous five pages. A total of 3200 steps
are shown. Note that this is more than twice as many as in the picture on page 30.
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For our everyday experience has led us to expect that an object
that looks complicated must have been constructed in a complicated
way. And so, for example, if we see a complicated mechanical device,
we normally assume that the plans from which the device was built
must also somehow be correspondingly complicated.

But the results at the end of the previous section show that at
least sometimes such an assumption can be completely wrong. For the
patterns we saw are in effect built according to very simple plans—that
just tell us to start with a single black cell, and then repeatedly to apply
a simple cellular automaton rule. Yet what emerges from these plans
shows an immense level of complexity.

So what is it that makes our normal intuition fail? The most
important point seems to be that it is mostly derived from experience
with building things and doing engineering—where it so happens that
one avoids encountering systems like the ones in the previous section.

For normally we start from whatever behavior we want to get,
then try to design a system that will produce it. Yet to do this reliably,
we have to restrict ourselves to systems whose behavior we can readily
understand and predict—for unless we can foresee how a system will
behave, we cannot be sure that the system will do what we want.

But unlike engineering, nature operates under no such constraint.
So there is nothing to stop systems like those at the end of the previous
section from showing up. And in fact one of the important conclusions
of this book is that such systems are actually very common in nature.

But because the only situations in which we are routinely aware
both of underlying rules and overall behavior are ones in which we are
building things or doing engineering, we never normally get any
intuition about systems like the ones at the end of the previous section.

So is there then any aspect of everyday experience that should
give us a hint about the phenomena that occur in these systems?
Probably the closest is thinking about features of practical computing.

For we know that computers can perform many complex tasks. Yet
at the level of basic hardware a typical computer is capable of executing just
a few tens of kinds of simple logical, arithmetic and other instructions. And

to some extent the fact that by executing large numbers of such

40



THE CRUCIAL EXPERIMENT ‘ CHAPTER 2

instructions one can get all sorts of complex behavior is similar to the
phenomenon we have seen in cellular automata.

But there is an important difference. For while the individual
machine instructions executed by a computer may be quite simple, the
sequence of such instructions defined by a program may be long and
complicated. And indeed—much as in other areas of engineering—the
typical experience in developing software is that to make a computer do
something complicated requires setting up a program that is itself
somehow correspondingly complicated.

In a system like a cellular automaton the underlying rules can be
thought of as rough analogs of the machine instructions for a computer,
while the initial conditions can be thought of as rough analogs of the
program. Yet what we saw in the previous section is that in cellular
automata not only can the underlying rules be simple, but the initial
conditions can also be simple—consisting say of just a single black
cell—and still the behavior that is produced can be highly complex.

So while practical computing gives a hint of part of what we saw
in the previous section, the whole phenomenon is something much
larger and stronger. And in a sense the most puzzling aspect of it is that
it seems to involve getting something from nothing.

For the cellular automata we set up are by any measure simple to
describe. Yet when we ran them we ended with patterns so complex
that they seemed to defy any simple description at all.

And one might hope that it would be possible to call on some
existing kind of intuition to understand such a fundamental
phenomenon. But in fact there seems to be no branch of everyday
experience that provides what is needed. And so we have no choice but
to try to develop a whole new kind of intuition.

And the only reasonable way to do this is to expose ourselves to a
large number of examples. We have seen so far only a few examples, all
in cellular automata. But in the next few chapters we will see many
more examples, both in cellular automata and in all sorts of other
systems. And by absorbing these examples, one is in the end able to
develop an intuition that makes the basic phenomena that I have

discovered seem somehow almost obvious and inevitable.
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Why These Discoveries Were Not Made Before

The main result of this chapter—that programs based on simple rules
can produce behavior of great complexity—seems so fundamental that
one might assume it must have been discovered long ago. But it was
not, and it is useful to understand some of the reasons why it was not.

In the history of science it is fairly common that new
technologies are ultimately what make new areas of basic science
develop. And thus, for example, telescope technology was what led to
modern astronomy, and microscope technology to modern biology. And
now, in much the same way, it is computer technology that has led to
the new kind of science that I describe in this book.

Indeed, this chapter and several of those that follow can in a sense
be viewed as an account of some of the very simplest experiments that
can be done using computers. But why is it that such simple
experiments were never done before?

One reason is just that they were not in the mainstream of any
existing field of science or mathematics. But a more important reason is
that standard intuition in traditional science gave no reason to think
that their results would be interesting.

And indeed, if it had been known that they were worthwhile,
many of the experiments could actually have been done even long
before computers existed. For while it may be somewhat tedious, it is
certainly possible to work out the behavior of something like a cellular
automaton by hand. And in fact, to do so requires absolutely no
sophisticated ideas from mathematics or elsewhere: all it takes is an
understanding of how to apply simple rules repeatedly.

And looking at the historical examples of ornamental art on the
facing page, there seems little reason to think that the behavior of many
cellular automata could not have been worked out many centuries or even
millennia ago. And perhaps one day some Babylonian artifact created using
the rule 30 cellular automaton from page 27 will be unearthed. But I very
much doubt it. For I tend to think that if pictures like the one on page 27
had ever in fact been seen in ancient times then science would have been

led down a very different path from the one it actually took.
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Even early in antiquity attempts were presumably made to see
whether simple abstract rules could reproduce the behavior of natural
systems. But so far as one can tell the only types of rules that were tried
were ones associated with standard geometry and arithmetic. And using
these kinds of rules, only rather simple behavior could be obtained—
adequate to explain some of the regularities observed in astronomy, but
unable to capture much of what is seen elsewhere in nature.

And perhaps because of this, it typically came to be assumed that
a great many aspects of the natural world are simply beyond human
understanding. But finally the successes based on calculus in the late
1600s began to overthrow this belief. For with calculus there was finally
real success in taking abstract rules created by human thought and
using them to reproduce all sorts of phenomena in the natural world.

But the particular rules that were found to work were fairly
sophisticated ones based on particular kinds of mathematical
equations. And from seeing the sophistication of these rules there began
to develop an implicit belief that in almost no important cases would
simpler rules be useful in reproducing the behavior of natural systems.

During the 1700s and 1800s there was ever-increasing success in
using rules based on mathematical equations to analyze physical
phenomena. And after the spectacular results achieved in physics in the
early 1900s with mathematical equations there emerged an almost
universal belief that absolutely every aspect of the natural world would
in the end be explained by using such equations.

Needless to say, there were many phenomena that did not readily
yield to this approach, but it was generally assumed that if only the
necessary calculations could be done, then an explanation in terms of
mathematical equations would eventually be found.

Beginning in the 1940s, the development of electronic computers
greatly broadened the range of calculations that could be done. But
disappointingly enough, most of the actual calculations that were tried
yielded no fundamentally new insights. And as a result many people
came to believe—and in some cases still believe today—that computers

could never make a real contribution to issues of basic science.
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But the crucial point that was missed is that computers are not
just limited to working out consequences of mathematical equations.
And indeed, what we have seen in this chapter is that there are
fundamental discoveries that can be made if one just studies directly
the behavior of even some of the very simplest computer programs.

In retrospect it is perhaps ironic that the idea of using simple
programs as models for natural systems did not surface in the early days
of computing. For systems like cellular automata would have been
immensely easier to handle on early computers than mathematical
equations were. But the issue was that computer time was an expensive
commodity, and so it was not thought worth taking the risk of trying
anything but well-established mathematical models.

By the end of the 1970s, however, the situation had changed, and
large amounts of computer time were becoming readily available. And this
is what allowed me in 1981 to begin my experiments on cellular automata.

There is, as I mentioned above, nothing in principle that requires
one to use a computer to study cellular automata. But as a practical
matter, it is difficult to imagine that anyone in modern times would
have the patience to generate many pictures of cellular automata by
hand. For it takes roughly an hour to make the picture on page 27 by
hand, and it would take a few weeks to make the picture on page 29.

Yet even with early mainframe computers, the data for these
pictures could have been generated in a matter of a few seconds and a
few minutes respectively. But the point is that one would be very
unlikely to discover the kinds of fundamental phenomena discussed in
this chapter just by looking at one or two pictures. And indeed for me to
do it certainly took carrying out quite large-scale computer experiments
on a considerable number of different cellular automata.

If one already has a clear idea about the basic features of a
particular phenomenon, then one can often get more details by doing
fairly specific experiments. But in my experience the only way to find
phenomena that one does not already know exist is to do very
systematic and general experiments, and then to look at the results with

as few preconceptions as possible. And while it takes only rather basic
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computer technology to make single pictures of cellular automata, it
requires considerably more to do large-scale systematic experiments.

Indeed, many of my discoveries about cellular automata came as
direct consequences of using progressively better computer technology.

As one example, I discovered the classification scheme for
cellular automata with random initial conditions described at the
beginning of Chapter 6 when I first looked at large numbers of different
cellular automata together on high-resolution graphics displays.
Similarly, I discovered the randomness of rule 30 (page 27) when I was
in the process of setting up large simulations for an early
parallel-processing computer. And in more recent years, I have
discovered a vast range of new phenomena as a result of easily being
able to set up large numbers of computer experiments in Mathematica.

Undoubtedly, therefore, one of the main reasons that the
discoveries I describe in this chapter were not made before the 1980s is
just that computer technology did not yet exist powerful enough to do
the kinds of exploratory experiments that were needed.

But beyond the practicalities of carrying out such experiments, it
was also necessary to have the idea that the experiments might be
worth doing in the first place. And here again computer technology
played a crucial role. For it was from practical experience in using
computers that I developed much of the necessary intuition.

As a simple example, one might have imagined that systems like
cellular automata, being made up of discrete cells, would never be able
to reproduce realistic natural shapes. But knowing about computer
displays it is clear that this is not the case. For a computer display, like
a cellular automaton, consists of a regular array of discrete cells or
pixels. Yet practical experience shows that such displays can produce
quite realistic images, even with fairly small numbers of pixels.

And as a more significant example, one might have imagined that
the simple structure of cellular automaton programs would make it
straightforward to foresee their behavior. But from experience in
practical computing one knows that it is usually very difficult to
foresee what even a simple program will do. Indeed, that is exactly why

bugs in programs are so common. For if one could just look at a program
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and immediately know what it would do, then it would be an easy
matter to check that the program did not contain any bugs.

Notions like the difficulty of finding bugs have no obvious
connection to traditional ideas in science. And perhaps as a result of
this, even after computers had been in use for several decades,
essentially none of this type of intuition from practical computing had
found its way into basic science. But in 1981 it so happened that I had
for some years been deeply involved in both practical computing and
basic science, and I was therefore in an almost unique position to apply
ideas derived from practical computing to basic science.

Yet despite this, my discoveries about cellular automata still
involved a substantial element of luck. For as I mentioned on page 19,
my very first experiments on cellular automata showed only very
simple behavior, and it was only because doing further experiments was
technically very easy for me that I persisted.

And even after I had seen the first signs of complexity in cellular
automata, it was several more years before I discovered the full range of
examples given in this chapter, and realized just how easily complexity
could be generated in systems like cellular automata.

Part of the reason that this took so long is that it involved
experiments with progressively more sophisticated computer
technology. But the more important reason is that it required the
development of new intuition. And at almost every stage, intuition
from traditional science took me in the wrong direction. But I found
that intuition from practical computing did better. And even though it
was sometimes misleading, it was in the end fairly important in putting
me on the right track.

Thus there are two quite different reasons why it would have
been difficult for the results in this chapter to be discovered much
before computer technology reached the point it did in the 1980s. First,
the necessary computer experiments could not be done with sufficient
ease that they were likely to be tried. And second, the kinds of intuition
about computation that were needed could not readily have been

developed without extensive exposure to practical computing.
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But now that the results of this chapter are known, one can go
back and see quite a number of times in the past when they came at
least somewhat close to being discovered.

It turns out that two-dimensional versions of cellular automata
were already considered in the early 1950s as possible idealized models
for biological systems. But until my work in the 1980s the actual
investigations of cellular automata that were done consisted mainly in
constructions of rather complicated sets of rules that could be shown to
lead to specific kinds of fairly simple behavior.

The question of whether complex behavior could occur in
cellular automata was occasionally raised, but on the basis of intuition
from engineering it was generally assumed that to get any substantial
complexity, one would have to have very complicated underlying rules.
And as a result, the idea of studying cellular automata with simple rules
never surfaced, with the result that nothing like the experiments
described in this chapter were ever done.

In other areas, however, systems that are effectively based on
simple rules were quite often studied, and in fact complex behavior was
sometimes seen. But without a framework to understand its significance,
such behavior tended either to be ignored entirely or to be treated as some
kind of curiosity of no particular fundamental significance.

Indeed, even very early in the history of traditional mathematics
there were already signs of the basic phenomenon of complexity. One
example known for well over two thousand years concerns the
distribution of prime numbers (see page 132). The rules for generating
primes are simple, yet their distribution seems in many respects
random. But almost without exception mathematical work on primes
has concentrated not on this randomness, but rather on proving the
presence of various regularities in the distribution.

Another early sign of the phenomenon of complexity could have
been seen in the digit sequence of a number like 7~ 3.141592653 ...
(see page 136). By the 1700s more than a hundred digits of 7 had been
computed, and they appeared quite random. But this fact was treated

essentially as a curiosity, and the idea never appears to have arisen that
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there might be a general phenomenon whereby simple rules like those
for computing 7 could produce complex results.

In the early 1900s various explicit examples were constructed in
several areas of mathematics in which simple rules were repeatedly
applied to numbers, sequences or geometrical patterns. And sometimes
nested or fractal behavior was seen. And in a few cases substantially
more complex behavior was also seen. But the very complexity of this
behavior was usually taken to show that it could not be relevant for real
mathematical work—and could only be of recreational interest.

When electronic computers began to be used in the 1940s, there
were many more opportunities for the phenomenon of complexity to be
seen. And indeed, looking back, significant complexity probably did
occur in many scientific calculations. But these calculations were
almost always based on traditional mathematical models, and since
previous analyses of these models had not revealed complexity, it
tended to be assumed that any complexity in the computer calculations
was just a spurious consequence of the approximations used in them.

One class of systems where some types of complexity were
noticed in the 1950s are so-called iterated maps. But as I will discuss on
page 149, the traditional mathematics that was used to analyze such
systems ended up concentrating only on certain specific features, and
completely missed the main phenomenon discovered in this chapter.

It is often useful in practical computing to produce sequences of
numbers that seem random. And starting in the 1940s, several simple
procedures for generating such sequences were invented. But perhaps
because these procedures always seemed quite ad hoc, no general
conclusions about randomness and complexity were drawn from them.

Along similar lines, systems not unlike the cellular automata
discussed in this chapter were studied in the late 1950s for generating
random sequences to be used in cryptography. Almost all the results
that were obtained are still military secrets, but I do not believe that
any phenomena like the ones described in this chapter were discovered.

And in general, within the context of mainstream science, the
standard intuition that had been developed made it very difficult for
anyone to imagine that it would be worth studying the behavior of the
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very simple kinds of computer programs discussed in this chapter. But
outside of mainstream science, some work along such lines was done.
And for example in the 1960s early computer enthusiasts tried running
various simple programs, and found that in certain cases these programs
could succeed in producing nested patterns.

Then in the early 1970s, considerable recreational computing
interest developed in a specific two-dimensional cellular automaton
known as the Game of Life, whose behavior is in some respects similar
to the rule 110 cellular automaton discussed in this chapter. Great
effort was spent trying to find structures that would be sufficiently
simple and predictable that they could be used as idealized components
for engineering. And although complex behavior was seen it was
generally treated as a nuisance, to be avoided whenever possible.

In a sense it is surprising that so much could be done on the
Game of Life without the much simpler one-dimensional cellular
automata in this chapter ever being investigated. And no doubt the lack
of a connection to basic science was at least in part responsible.

But whatever the reasons, the fact remains that, despite many
hints over the course of several centuries, the basic phenomenon that I
have described in this chapter was never discovered before.

It is not uncommon in the history of science that once a general
new phenomenon has been identified, one can see that there was
already evidence of it much earlier. But the point is that without the
framework that comes from knowing the general phenomenon, it is
almost inevitable that such evidence will have been ignored.

It is also one of the ironies of progress in science that results
which at one time were so unexpected that they were missed despite
many hints eventually come to seem almost obvious. And having lived
with the results of this chapter for nearly two decades, it is now
difficult for me to imagine that things could possibly work in any other
way. But the history that I have outlined in this section—like the
history of many other scientific discoveries—provides a sobering

reminder of just how easy it is to miss what will later seem obvious.
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The World of Simple Programs

The Search for General Features

At the beginning of the last chapter we asked the basic question of what
simple programs typically do. And as a first step towards answering this
question we looked at several specific examples of a class of programs
known as cellular automata.

The basic types of behavior that we found are illustrated in the
pictures on the next page. In the first of these there is pure repetition,
and a very simple pattern is formed. In the second, there are many
intricate details, but at an overall level there is still a very regular
nested structure that emerges.

In the third picture, however, one no longer sees such regularity,
and instead there is behavior that seems in many respects random. And
finally in the fourth picture there is what appears to be still more
complex behavior—with elaborate localized structures being generated
that interact in complex ways.

At the outset there was no indication that simple programs could
ever produce behavior so diverse and often complex. But having now
seen these examples, the question becomes how typical they are. Is it
only cellular automata with very specific underlying rules that produce
such behavior? Or is it in fact common in all sorts of simple programs?

My purpose in this chapter is to answer this question by looking

at a wide range of different kinds of programs. And in a sense my
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repetition (rule 250) nesting (rule 90)
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randomness (rule 30) localized structures (rule 110)

Four basic examples from the previous chapter of behavior produced by cellular automata with simple underlying rules. In
each case, the most obvious features that are seen are different. Note that all the pictures are shown on the same scale;
the last picture appears coarser because the structures it contains are larger.

approach is to work like a naturalist—exploring and studying the
various forms that exist in the world of simple programs.

I start by considering more general cellular automata, and then I
go on to consider a whole sequence of other kinds of programs—with
underlying structures further and further away from the array of black
and white cells in the cellular automata of the previous chapter.

And what I discover is that whatever kind of underlying rules one
uses, the behavior that emerges turns out to be remarkably similar to
the basic examples that we have already seen in cellular automata.

Throughout the world of simple programs, it seems, there is great
universality in the types of overall behavior that can be produced. And
in a sense it is ultimately this that makes it possible for me to construct
the coherent new kind of science that I describe in this book—and to
use it to elucidate a large number of phenomena, independent of the

particular details of the systems in which they occur.
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More Cellular Automata

The pictures below show the rules used in the four cellular automata on
the facing page. The overall structure of these rules is the same in each
case; what differs is the specific choice of new colors for each possible

combination of previous colors for a cell and its two neighbors.

LI B N || ENlin JiN EljEN jieEE] I Eh N || ENlin |iN EljEN jiSEE]
L] ] ] ] u [H] ] [H] [H] ] [H] ] u [H] ] [H]
rule 250 rule 90
I _Ei B || EEllm i EiEN JiEEE I Ej B || EEllm i EiEN JiEEE
O O O u u u u O O u u O u u u O
rule 30 rule 110

The rules used for the four examples of cellular automata on the facing page. In each case, these
specify the new color of a cell for each possible combination of colors of that cell and its immediate
neighbors on the previous step. The rules are numbered according to the scheme described below.

There turn out to be a total of 256 possible sets of choices that
can be made. And following my original work on cellular automata

these choices can be numbered from 0 to 255, as in the picture below.

L _Hj B J| EEhE N EhEE jiEE]
oo o) oo oo [H]

The sequence of 256 possible cellular
automaton rules of the kind shown

[ 0 0 0 0 0 0 0 = 0

above. As indicated, the rules can ‘?‘-D]‘Iél‘lé\]‘tm-‘%]‘mél‘mim‘
conveniently be numbered from 0 to 0 0 0 0 0 0 0 1= 1
255. The humbgr assigned |§ suc.:h that
when written in base 2, it gives a o/ o|g|g|]g /' m | 0O»

0 [ 0 0 0 0 7 0o = 2

sequence of 0's and 1's that correspond
to the sequence of new colors chosen
for each of the eight possible cases
covered by the rule.

bl hoaoH o Ha
1 1 1 1 1 1 1 17 = 255
But so how do cellular automata with all these different rules
behave? The next page shows a few examples in detail, while the
following two pages show what happens in all 256 possible cases.
At first, the diversity of what one sees is a little overwhelming.
But on closer investigation, definite themes begin to emerge.
In the very simplest cases, all the cells in the cellular automaton

end up just having the same color after one step. Thus, for example, in

53



STEPHEN WOLFRAM A NEW KIND OF SCIENCE

rule 100 rule 101 rule 102 rule 103
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Evolution of cellular automata with a sequence of different possible rules, starting in all cases from a single black cell.
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rule 152 rule 154 rule 155 rule 156 rule 157 rule 158 rule 159
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rule 168 rule 170 rule 171 rule 172 rule 173 rule 174 rule 175
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rules 0 and 128 all the cells become white, while in rule 255 all of them
become black. There are also rules such as 7 and 127 in which all cells
alternate between black and white on successive steps.

But among the rules shown on the last few pages, the single most
common kind of behavior is one in which a pattern consisting of a
single cell or a small group of cells persists. Sometimes this pattern
remains stationary, as in rules 4 and 123. But in other cases, such as
rules 2 and 103, it moves to the left or right.

It turns out that the basic structure of the cellular automata
discussed here implies that the maximum speed of any such motion
must be one cell per step. And in many rules, this maximum speed is
achieved—although in rules such as 3 and 103 the average speed is
instead only half a cell per step.

In about two-thirds of all the cellular automata shown on the last
few pages, the patterns produced remain of a fixed size. But in about
one-third of cases, the patterns instead grow forever. Of such growing
patterns, the simplest kind are purely repetitive ones, such as those
seen in rules 50 and 109. But while repetitive patterns are by a small
margin the most common kind, about 14% of all the cellular automata
shown yield more complicated kinds of patterns.

The most common of these are nested patterns, like those on the
next page. And it turns out that although 24 rules in all yield such
nested patterns, there are only three fundamentally different forms that
occur. The simplest and by far the most common is the one exemplified
by rules 22 and 60. But as the pictures on the next page show, other
nested forms are also possible. (In the case of rule 225, the width of the
overall pattern does not grow at a fixed rate, but instead is on average

proportional to the square root of the number of steps.)

4 The behavior of all 256 possible cellular automata with rules involving two colors and nearest
neighbors. In each case, thirty steps of evolution are shown, starting from a single black cell. Note
that some of the rules are related just by interchange of left and right or black and white (e.g. rules 2
and 16 or rules 126 and 129). There are 88 fundamentally inequivalent such elementary rules.
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rule 22 rule 60

rule 105 rule 129

rule 150 rule 225 rule 225 (shifted)

Examples of cellular automata that produce nested or fractal patterns. Rule 22—Ilike rule 90 from page 26—gives a pattern with
fractal dimension Log[2, 3]~ 1.59; rule 150 gives one with fractal dimension Log[2, 1+\5 ]~ 1.69. The width of the pattern
obtained from rule 225 increases like the square root of the number of steps.

Repetition and nesting are widespread themes in many cellular
automata. But as we saw in the previous chapter, it is also possible for
cellular automata to produce patterns that seem in many respects
random. And out of the 256 rules discussed here, it turns out that 10
yield such apparent randomness. There are three basic forms, as

illustrated on the facing page.

Examples of cellular automata that produce patterns with many apparently random features.
Three hundred steps of evolution are shown, starting in each case from a single black cell. )
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Beyond randomness, the last example in the previous chapter was
rule 110: a cellular automaton whose behavior becomes partitioned into
a complex mixture of regular and irregular parts. This particular cellular
automaton is essentially unique among the 256 rules considered here:
of the four cases in which such behavior is seen, all are equivalent if one
just interchanges the roles of left and right or black and white.

So what about more complicated cellular automaton rules?

The 256 “elementary” rules that we have discussed so far are by
most measures the simplest possible—and were the first ones I studied.
But one can for example also look at rules that involve three colors,
rather than two, so that cells can not only be black and white, but also
gray. The total number of possible rules of this kind turns out to be
immense—7,625,597,484,987 in all—but by considering only so-called
“totalistic” ones, the number becomes much more manageable.

The idea of a totalistic rule is to take the new color of each cell to
depend only on the average color of neighboring cells, and not on their
individual colors. The picture below shows one example of how this
works. And with three possible colors for each cell, there are 2187
possible totalistic rules, each of which can conveniently be identified
by a code number as illustrated in the picture. The facing page shows a

representative sequence of such rules.

Example of a totalistic cellular automaton with three
possible colors for each cell. The rule is set up so that
the new color of every cell is determined by the
average of the previous colors of the cell and its
immediate neighbors. With 0 representing white, 1
gray and 2 black, the rightmost element of the rule
gives the result for average color 0, while the element
immediately to its left gives the result for average
color 1/3—and so on. Interpreting the sequence of
new colors as a sequence of base 3 digits, one can
assign a code number to each totalistic rule.

I BN e e ]
o 0 0 o u o 0
1 0 0 1 2 1 0

We might have expected that by allowing three colors rather than

two we would immediately get noticeably more complicated behavior.
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code 993 code 996 code 999 code 1002 code 1005

A

code 1008 code 1011 code 1014 code 1017 code 1020

code 1023 code 1026 code 1029 code 1032 code 1035

code 1038 code 1041 code 1044 code 1047 code 1050
Aﬁéf?f):zii}k; A

code 1053 code 1056 code 1059 code 1062 code 1065

code 1068 code 1071 code 1074 code 1077 code 1080
oy
AFn
code 1083 code 1086 code 1089 code 1092 code 1095
code 1098 code 1101 code 1104 code 1107 code 1110

code 1113 code 1116 code 1119 code 1122 code 1125

A

code 1128 code 1131 code 1134 code 1137 code 1140

A sequence of totalistic cellular automata with three possible colors for each cell. Although their basic rules are more
complicated, the cellular automata shown here do not seem to have fundamentally more complicated behavior than the
two-color cellular automata shown on previous pages. Note that in the sequence of rules shown here, those that change the
white background are not included. The symmetry of all the patterns is a consequence of the basic structure of totalistic rules.
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But in fact the behavior we see on the previous page is not unlike what
we already saw in many elementary cellular automata a few pages back.
Having more complicated underlying rules has not, it seems, led to
much greater complexity in overall behavior.

And indeed, this is a first indication of an important general
phenomenon: that at least beyond a certain point, adding complexity to
the underlying rules for a system does not ultimately lead to more
complex overall behavior. And so for example, in the case of cellular
automata, it seems that all the essential ingredients needed to produce
even the most complex behavior already exist in elementary rules.

Using more complicated rules may be convenient if one wants, say,
to reproduce the details of particular natural systems, but it does not add
fundamentally new features. Indeed, looking at the pictures on the
previous page one sees exactly the same basic themes as in elementary
cellular automata. There are some patterns that attain a definite size, then
repeat forever, as shown below, others that continue to grow, but have a
repetitive form, as at the top of the facing page, and still others that

produce nested or fractal patterns, as at the bottom of the page.

Examples  of  three-color
totalistic  rules that vyield
patterns which attain a certain
size, then repeat forever. The
maximum repetition period is
found to be 78 steps, and is
achieved by the rule with code
number 1329. In the pictures
shown here and on the following
pages, the initial condition used
contains a single gray cell.

code 600 code 843  code 870 code 1086 code 1167 code 1329 code 1572 code 1815 code 1842
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code 219

code 957

code 966

code 1884

Examples of three-color totalistic rules that yield patterns which grow forever but have a fundamentally repetitive structure.

code 237

code 948

code 1749

Examples of three-color totalistic rules which yield nested patterns. In most cases, these patterns have an overall form that is
similar to what was found with two-color rules. But code 420, for example, yields a pattern with a slightly different structure.
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code 177

code 912

code 2040

Examples of three-color totalistic rules that yield patterns with seemingly random features. Three
hundred steps of evolution are shown in each case.
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In detail, some of the patterns are definitely more complicated
than those seen in elementary rules. But at the level of overall behavior,
there are no fundamental differences. And in the case of nested patterns
even the specific structures seen are usually the same as for elementary
rules. Thus, for example, the structure in codes 237 and 948 is the most
common, followed by the one in code 1749. The only new structure not
already seen in elementary rules is the one in code 420—but this occurs
only quite rarely.

About 85% of all three-color totalistic cellular automata produce
behavior that is ultimately quite regular. But just as in elementary cellular
automata, there are some rules that yield behavior that seems in many
respects random. A few examples of this are given on the facing page.

Beyond fairly uniform random behavior, there are also cases
similar to elementary rule 110 in which definite structures are
produced that interact in complicated ways. The next page gives a few
examples. In the first case shown, the pattern becomes repetitive after
about 150 steps. In the other two cases, however, it is much less clear
what will ultimately happen. The following pages continue these
patterns for 3000 steps. But even after this many steps it is still quite
unclear what the final behavior will be.

Looking at pictures like these, it is at first difficult to believe that
they can be generated just by following very simple underlying cellular
automaton rules. And indeed, even if one accepts this, there is still a
tendency to assume that somehow what one sees must be a
consequence of some very special feature of cellular automata.

As it turns out, complexity is particularly widespread in cellular
automata, and for this reason it is fortunate that cellular automata were
the very first systems that I originally decided to study.

But as we will see in the remainder of this chapter, the fundamental
phenomena that we discovered in the previous chapter are in no way
restricted to cellular automata. And although cellular automata remain
some of the very best examples, we will see that a vast range of utterly
different systems all in the end turn out to exhibit extremely similar

types of behavior.
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code 1041

code 1635

code 2049

Examples of three-color totalistic rules with highly complex behavior showing a mixture of regularity and
irregularity. The partitioning into identifiable structures is similar to what we saw in rule 110 on page 32.
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code 2049
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The pictures below show totalistic cellular automata whose
overall patterns of growth seem, at least at first, quite complicated. But
it turns out that after only about 100 steps, three out of four of these

patterns have resolved into simple forms.

Examples of rules that vyield patterns
which seem to be on the edge between
growth and extinction. For all but code
1699, the fate of these patterns in fact
becomes clear after less than 100 steps. A
total of 250 steps are shown here.

code 357 code 600 code 1599 code 2058

The one remaining pattern is, however, much more complicated.
As shown on the next page, for several thousand steps it simply grows,
albeit somewhat irregularly. But then its growth becomes slower. And
inside the pattern parts begin to die out. Yet there continue to be
occasional bursts of growth. But finally, after a total of 8282 steps, the

pattern resolves into 31 simple repetitive structures.

d Three thousand steps in the evolution of the last two cellular automata from page 66.
Despite the simplicity of their underlying rules, the final patterns produced show
immense complexity. In neither case is it clear what the final outcome will be—whether
apparent randomness will take over, or whether a simple repetitive form will emerge.
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code 1599

color totalistic cellular automaton with code number 1599. Starting from a

Nine thousand steps in the evolution of the three

single gray cell, each column corresponds to 3000 steps. The outcome of the evolution finally becomes clear after 8282

steps, when the pattern resolves into 31 simple repetitive structures.
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Mobile Automata

One of the basic features of a cellular automaton is that the colors of all
the cells it contains are updated in parallel at every step in its evolution.

But how important is this feature in determining the overall
behavior that occurs? To address this question, I consider in this section
a class of systems that I call “mobile automata”.

Mobile automata are similar to cellular automata except that
instead of updating all cells in parallel, they have just a single “active
cell” that gets updated at each step—and then they have rules that
specify how this active cell should move from one step to the next.

The picture below shows an example of a mobile automaton. The
active cell is indicated by a black dot. The rule applies only to this
active cell. It looks at the color of the active cell and its immediate
neighbors, then specifies what the new color of the active cell should
be, and whether the active cell should move left or right.

[Te[]
Ce

e ]
Ce

el ]
o[ ]

[ | [ ]
o] Ce

[Tl
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[le[]
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An example of a mobile automaton. Like a cellular automaton, a
mobile automaton consists of a line of cells, with each cell having
two possible colors. But unlike a cellular automaton, a mobile
automaton has only one “active cell” (indicated here by a black dot)
at any particular step. The rule for the mobile automaton specifies
both how the color of this active cell should be updated, and
whether it should move to the left or right. The result of evolution
for a larger number of steps with the particular rule shown here is
given as example (f) on the next page.

Much as for cellular automata, one can enumerate all possible rules
of this kind; it turns out that there are 65,536 of them. The pictures at the
top of the next page show typical behavior obtained with such rules. In
cases (a) and (b), the active cell remains localized to a small region, and the

behavior is very simple and repetitive. Cases (c) through (f) are similar,
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b) (c) (d)

Examples of mobile automata with various rules. In cases (a) through (f) the motion of the active cell is purely repetitive. In cases
(9) and (h) it is not. The width of the pattern in these cases after t steps grows roughly like V2t .

except that the whole pattern shifts systematically to the right, and in
cases (e) and (f) a sequence of stripes is left behind.

But with a total of 218 out of the 65,536 possible rules, one gets
somewhat different behavior, as cases (g) and (h) above show. The active
cell in these cases does not move in a strictly repetitive way, but instead
sweeps backwards and forwards, going progressively further every time.

The overall pattern produced is still quite simple, however. And

indeed in the compressed form below, it is purely repetitive.

KR : HE’ "
—==\{]

—

Compressed versions of the evolution of mobile automata (g) and (h) above, obtained by showing only
those steps at which the active cell is further to the left or right than it has ever been before.
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Of the 65,536 possible mobile automata with rules of the kind
discussed so far it turns out that not a single one shows more complex
behavior. So can such behavior then ever occur in mobile automata?

One can extend the set of rules one considers by allowing not
only the color of the active cell itself but also the colors of its
immediate neighbors to be updated at each step. And with this
extension, there are a total of 4,294,967,296 possible rules.

If one samples these rules at random, one finds that more than
99% of them just yield simple repetitive behavior. But once in every
few thousand rules, one sees behavior of the kind shown below—that is
not purely repetitive, but instead has a kind of nested structure.

A mobile automaton with slightly more
complicated rules that yields a nested
pattern. Each column on the left shows
200 steps in the mobile automaton
evolution. The compressed form of the
— pattern is based on a total of 8000 steps.

compressed
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The overall pattern is nevertheless still very regular. But after
searching through perhaps 50,000 rules, one finally comes across a rule
of the kind shown below—in which the compressed pattern exhibits
very much the same kind of apparent randomness that we saw in
cellular automata like rule 30.

A mobile automaton that yields a pattern with
seemingly random features. The motion of the active
cell is still quite regular, as the picture on the right
shows. But when viewed in compressed form, as
below, the overall pattern of colors seems in many
respects random. Each column on the right shows
200 steps of evolution; the compressed form below
corresponds to 50,000 steps.

compressed

!

T :

But even though the final pattern left behind by the active cell in

the picture above seems in many respects random, the motion of the
active cell itself is still quite regular. So are there mobile automata in
which the motion of the active cell is also seemingly random? At first, I
believed that there might not be. But after searching through a few
million rules, I finally found the example shown on the facing page.
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Despite the fact that mobile automata update only one cell at a
time, it is thus still possible for them to produce behavior of great
complexity. But while we found that such behavior is quite common in
cellular automata, what we have seen in this section indicates that it is
rather rare in mobile automata.

One can get some insight into the origin of this difference by
studying a class of generalized mobile automata, that in a sense
interpolate between ordinary mobile automata and cellular automata.

The basic idea of such generalized mobile automata is to allow
more than one cell to be active at a time. And the underlying rule is
then typically set up so that under certain circumstances an active cell
can split in two, or can disappear entirely.

Thus in the picture below, for example, new active cells end up

being created every few steps.
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A generalized mobile automaton in which any number
of cells can be active at a time. The rule given above is
applied to every cell that is active at a particular step. In
many cases, the rule specifies just that the active cell
should move to the left or right. But in some cases, it
specifies that the active cell should split in two,
thereby creating an additional active cell.

If one chooses generalized mobile automata at random, most of
them will produce simple behavior, as shown in the first few pictures
on the facing page. But in a few percent of all cases, the behavior is
much more complicated. Often the arrangement of active cells is still
quite regular, although sometimes it is not.

But looking at many examples, a certain theme emerges: complex
behavior almost never occurs except when large numbers of cells are
active at the same time. Indeed there is, it seems, a significant
correlation between overall activity and the likelihood of complex
behavior. And this is part of why complex behavior is so much more

common in cellular automata than in mobile automata.
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Examples of generalized mobile automata with various rules. In case (a), only a limited number of cells ever become active. But in
all the other cases shown active cells proliferate forever. In case (d), almost all cells are active, and the system operates
essentially like a cellular automaton. In the remaining cases somewhat complicated patterns of cells are active. Note that unlike in
ordinary mobile automata, examples of complex behavior like those shown here are comparatively easy to find.
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Turing Machines

In the history of computing, the first widely understood theoretical
computer programs ever constructed were based on a class of systems
now called Turing machines.

Turing machines are similar to mobile automata in that they
consist of a line of cells, known as the “tape”, together with a single
active cell, known as the “head”. But unlike in a mobile automaton, the
head in a Turing machine can have several possible states, represented
by several possible arrow directions in the picture below.

And in addition, the rule for a Turing machine can depend on the
state of the head, and on the color of the cell at the position of the head,

but not on the colors of any neighboring cells.

] 4] = [« & le]
Oa| -l [ W | 4] (DEN

An example of a Turing machine. Like a
mobile automaton, the Turing machine
has one active cell or “head’ but now the
head has several possible states,
indicated by the directions of the arrows
in this picture.

Turing machines are still widely used in theoretical computer
science. But in almost all cases, one imagines constructing examples to
perform particular tasks, with a huge number of possible states and a
huge number of possible colors for each cell.

But in fact there are non-trivial Turing machines that have just
two possible states and two possible colors for each cell. The pictures
on the facing page show examples of some of the 4096 machines of this
kind. Both repetitive and nested behavior are seen to occur, though

nothing more complicated is found.
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(a)
(b)

() E‘ 3 %

(b) (c) (d) (e) (f)

Examples of Turing machines with two possible states for the head. There are a total of 4096 rules
of this kind. Repetitive and nested patterns are seen, but nothing more complicated ever occurs.
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From our experience with mobile automata, however, we expect

that there should be Turing machines that have more complex behavior.

With three states for the head, there are about three million

possible Turing machines. But while some of these give behavior that

looks slightly more complicated in detail, as in cases (a) and (b) on the

next page, all ultimately turn out to yield just repetitive or nested

patterns—at least if they are started with all cells white.

With four states, however, more

complicated behavior

immediately becomes possible. Indeed, in about five out of every

million rules of this kind, one gets patterns with features that seem in

many respects random, as in the pictures on the next two pages.

So what happens if one allows more than four states for the head?

It turns out that there is almost no change in the kind of behavior one

sees. Apparent randomness becomes slightly more common, but

otherwise the results are essentially the same.

Once again, it seems that there is a threshold for complex

behavior—that is reached as soon as one has at least four states. And

just as in cellular automata, adding more complexity to the underlying

rules does not yield behavior that is ultimately any more complex.
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Examples of Turing machines with three and four possible states. With three possible states, only repetitive and nested
patterns are ever ultimately produced, at least starting with all cells white. But with four states, more complicated patterns
are generated. The top set of pictures show the first 150 steps of evolution according to various different rules, starting with
the head in the first state (arrow pointing up), and all cells white. The bottom set of pictures show the evolution in each case
in a compressed form. Each of these pictures includes the first 50 steps at which the head is further to the left or right than
it has ever been before.
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A Turing machine that exhibits behavior
which seems in many respects random. The
Turing machine has four possible states for
its head, and two possible colors for each
cell on its tape. It starts with all cells white,
corresponding to a blank tape. Each column
above shows 250 steps of evolution; the
compressed form on the left corresponds to
a total of 20,000 steps.
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Substitution Systems

One of the features that cellular automata, mobile automata and Turing
machines all have in common is that at the lowest level they consist of
a fixed array of cells. And this means that while the colors of these cells
can be updated according to a wide range of different possible rules, the
underlying number and organization of cells always stays the same.

Substitution systems, however, are set up so that the number of
elements can change. In the typical case illustrated below, one has a
sequence of elements—each colored say black or white—and at each step
each one of these elements is replaced by a new block of elements.

In the simple cases shown, the rules specify that each element of
a particular color should be replaced by a fixed block of new elements,
independent of the colors of any neighboring elements.

Examples of substitution systems with two possible kinds of elements, in which at every step each
kind of element is replaced by a fixed block of new elements. In the first case shown, the total number
of elements obtained doubles at every step; in the second case, it follows a Fibonacci sequence, and
increases by a factor of roughly (7+V'5)/2~1.618 at every step. The two substitution systems
shown here correspond to the second and third examples in the pictures on the following two pages.

And with these kinds of rules, the total number of elements
typically grows very rapidly, so that pictures like those above quickly
become rather unwieldy. But at least for these kinds of rules, one can
make clearer pictures by thinking of each step not as replacing every
element by a sequence of elements that are drawn the same size, but
rather of subdividing each element into several that are drawn smaller.

In the cases on the facing page, I start from a single element
represented by a long box going all the way across the picture. Then on
successive steps the rules for the substitution system specify how each
box should be subdivided into a sequence of shorter and shorter boxes.
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Examples of substitution systems in which every element is drawn as being subdivided into a
sequence of new elements at each step. In all cases the overall patterns obtained can be seen to
have a very regular nested form. Rule (b) gives the so-called Thue-Morse sequence, which we will
encounter many times in this book. Rule (c) is related to the Fibonacci sequence. Rule (d) gives a
version of the Cantor set.

The pictures at the top of the next page show a few more examples.
And what we see is that in all cases there is obvious regularity in the
patterns produced. Indeed, if one looks carefully, one can see that every
pattern just consists of a collection of identical nested pieces.

And ultimately this is not surprising. After all, the basic rules for
these substitution systems specify that any time an element of a
particular color appears it will always get subdivided in the same way.

The nested structure becomes even clearer if one represents
elements not as boxes, but instead as branches on a tree. And with this
setup the idea is to start from the trunk of the tree, and then at each
step to use the rules for the substitution system to determine how
every branch should be split into smaller branches.
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More examples of neighbor-independent substitution systems like those on the previous page. Each rule yields a different sequence
of elements, but all of them ultimately have simple nested forms.

Then the point is that because the rules depend only on the color of
a particular branch, and not on the colors of any neighboring branches, the
subtrees that are generated from all the branches of the same color must

have exactly the same structure, as in the pictures below.

hahdadien

The evolution of the same substitution systems as on the previous page, but now shown in terms of trees. Starting from the trunk at
the bottom, the rules specify that at each step every branch of a particular color should split into smaller branches in the same way.
The result is that each tree consists of a collection of progressively smaller subtrees with the same structure. On page 400 | will use
similar systems to discuss the growth of actual trees and leaves.
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To get behavior that is more complicated than simple nesting, it
follows therefore that one must consider substitution systems whose
rules depend not only on the color of a single element, but also on the
color of at least one of its neighbors. The pictures below show examples
in which the rules for replacing an element depend not only on its own

color, but also on the color of the element immediately to its right.
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Examples of substitution systems whose rules depend not just on the color of an element itself, but
also on the color of the element immediately to its right. Rules of this kind cannot readily be
interpreted in terms of simple subdivision of one element into several. And as a result, there is no
obvious way to choose what size of box should be used to represent each element in the picture.
What | do here is simply to divide the whole width of the picture equally among all elements that
appear at each step. Note that on every step the rightmost element is always dropped, since no rule
is given for how to replace it.

In the first example, the pattern obtained still has a simple nested
structure. But in the second example, the behavior is more complicated,
and there is no obvious nested structure.

One feature of both examples, however, is that the total number
of elements never decreases from one step to the next. The reason for
this is that the basic rules we used specify that every single element

should be replaced by at least one new element.
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It is, however, also possible to consider substitution systems in

which elements can simply disappear. If the rate of such disappearances

is too large, then almost any pattern will quickly die out. And if there

are too few disappearances, then most patterns will grow very rapidly.

But there is always a small fraction of rules in which the creation

and destruction of elements is almost perfectly balanced.

Two views of a substitution system whose
rules allow both creation and destruction of
elements. In the view on the left, the boxes
representing each element are scaled to keep
the total width the same, whereas on the
right each box has a fixed size, as in our
original pictures of substitution systems on
page 82. The right-hand view shows that the
rates of creation and destruction of elements
are balanced closely enough that the total
number of elements grows by only a fixed
amount at each step.

L/ 7]
.
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The picture above shows one example. The number of elements
does end up increasing in this particular example, but only by a fixed
amount at each step. And with such slow growth, we can again
represent each element by a box of the same size, just as in our original
pictures of substitution systems on page 82.

When viewed in this way, however, the pattern produced by the
substitution system shown above is seen to have a simple repetitive
form. And as it turns out, among substitution systems with the same
type of rules, all those which yield slow growth also seem to produce
only such simple repetitive patterns.

Knowing this, we might conclude that somehow substitution
systems just cannot produce the kind of complexity that we have seen
in systems like cellular automata. But as with mobile automata and
with Turing machines, we would again be wrong. Indeed, as the
pictures on the facing page demonstrate, allowing elements to have
three or four colors rather than just two immediately makes much more
complicated behavior possible.
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(a)
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(d) (e)

Examples of substitution systems that have three and four possible colors for
each element. The particular rules shown are ones that lead to slow growth
in the total number of elements. Note that on each line in each picture, only
the order of elements is ever significant: as the insets show, a particular
element may change its position as a result of the addition or subtraction of
elements to its left. Note that the pattern in case (a) does eventually repeat,
while the one in case (b) eventually shows a nested structure.
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As it turns out, the first substitution system shown works almost
exactly like a cellular automaton. Indeed, away from the right-hand
edge, all the elements effectively behave as if they were lying on a
regular grid, with the color of each element depending only on the
previous color of that element and the element immediately to its right.

The second substitution system shown again has patches that
exhibit a regular grid structure. But between these patches, there are
regions in which elements are created and destroyed. And in the other
substitution systems shown, elements are created and destroyed
throughout, leaving no trace of any simple grid structure. So in the end
the patterns we obtain can look just as random as what we have seen in

systems like cellular automata.

Sequential Substitution Systems

None of the systems we have discussed so far in this chapter might at first
seem much like computer programs of the kind we typically use in
practice. But it turns out that there are for example variants of
substitution systems that work essentially just like standard text editors.

The first step in understanding this correspondence is to think
of substitution systems as operating not on sequences of colored
elements but rather on strings of elements or letters. Thus for
example the state of a substitution system at a particular step can be
represented by the string ABBBABA, where the A’s correspond to
white elements and the B’s to black ones.

The substitution systems that we discussed in the previous
section work by replacing each element in such a string by a new
sequence of elements—so that in a sense these systems operate in
parallel on all the elements that exist in the string at each step.

But it is also possible to consider sequential substitution
systems, in which the idea is instead to scan the string from left to
right, looking for a particular sequence of elements, and then to
perform a replacement for the first such sequence that is found. And
this setup is now directly analogous to the search-and-replace

function of a typical text editor.
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The picture below shows an example of a sequential substitution
system in which the rule specifies simply that the first sequence of the
form BA found at each step should be replaced with the sequence ABA.

An example of a very simple sequential substitution
system. The light squares can be thought of as
corresponding to the element A, and the dark squares
to the element B. At each step, the rule then specifies
that the string which exists at that step should be
scanned from left to right, and the first sequence BA
that is found should be replaced by ABA. In the picture,
the black dots indicate which elements are being
replaced at each step. In the case shown, the initial
string is BABA. At each step, the rule then has the
effect of adding an A inside the string.

The behavior in this case is very simple, with longer and longer
strings of the same form being produced at each step. But one can get
more complicated behavior if one uses rules that involve more than just
one possible replacement. The idea in this case is at each step to scan
the string repeatedly, trying successive replacements on successive
scans, and stopping as soon as a replacement that can be used is found.

The picture on the next page shows a sequential substitution
system with rule {ABA - AAB, A » ABA} involving two possible
replacements. Since the sequence ABA occurs in the initial string that is
given, the first replacement is used on the first step. But the string
BAAB that is produced at the second step does not contain ABA, so now
the first replacement cannot be used. Nevertheless, since the string does
contain the single element A, the second replacement can still be used.

Despite such alternation between different replacements,
however, the final pattern that emerges is very regular. Indeed, if one

allows only two possible replacements—and two possible elements—
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Tu

A sequential substitution system
whose rule involves two possible
replacements. At each step, the
whole string is scanned once to try to
apply the first replacement, and is
then scanned again if necessary to
try to apply the second replacement.

then it seems that no rule ever gives behavior that is much more
complicated than in the picture above.

And from this one might be led to conclude that sequential
substitution systems could never produce behavior of any substantial
complexity. But having now seen complexity in many other kinds of
systems, one might suspect that it should also be possible in sequential
substitution systems.

And it turns out that if one allows more than two possible
replacements then one can indeed immediately get more complex
behavior. The pictures on the facing page show a few examples. In many
cases, fairly regular repetitive or nested patterns are still produced.

But about once in every 10,000 randomly selected rules, rather
different behavior is obtained. Indeed, as the picture on the following
page demonstrates, patterns can be produced that seem in many
respects random, much like patterns we have seen in cellular
automata and other systems.

So this leads to the rather remarkable conclusion that just by
using the simple operations available even in a very basic text editor, it

is still ultimately possible to produce behavior of great complexity.
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Examples of sequential substitution systems whose rules

involve three possible replacements.
systems are started from the initial string BAB. The black
dots indicate the elements that are replaced at each step.
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An example of a sequential substitution system that yields apparently random behavior. Each column

@ @ E on the right-hand side shows the evolution of the system for 250 steps. The compressed picture on the
left is made by evolving for a million steps, but showing only steps at which the string becomes longer

than it has ever been before. (The rule is the same as (g) on the previous page.)
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Tag Systems

One of the goals of this chapter is to find out just how simple the
underlying structure of a system can be while the system as a whole is
still capable of producing complex behavior. And as one example of a
class of systems with a particularly simple underlying structure, I
consider here what are sometimes known as tag systems.

A tag system consists of a sequence of elements, each colored say
black or white. The rules for the system specify that at each step a fixed
number of elements should be removed from the beginning of the
sequence. And then, depending on the colors of these elements, one of
several possible blocks is tagged onto the end of the sequence.

The pictures below show examples of tag systems in which just
one element is removed at each step. And already in these systems one

sometimes sees behavior that looks somewhat complicated.

(a)

(b)

el ela
]

fe

(c)

Examples of tag systems in which a single element is removed from the beginning of the sequence at each step, and a new
block of elements is added to the end of the sequence according to the rules shown. Because only a single element is
removed at each step, the systems effectively just cycle through all elements, replacing each one in turn. And after every
complete cycle, the sequences obtained correspond exactly to the sequences produced on successive steps in the first
three ordinary neighborindependent substitution systems shown on page 83.

But in fact it turns out that if only one element is removed at
each step, then a tag system always effectively acts just like a slow
version of a neighbor-independent substitution system of the kind we
discussed on page 83. And as a result, the pattern it produces must
ultimately have a simple repetitive or nested form.

If two elements are removed at each step, however, then this is no
longer true. And indeed, as the pictures on the next page demonstrate,

the behavior that is obtained in this case can often be very complicated.
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Examples of tag systems in which at each step two elements are removed from the beginning of the sequence and then,
based on what these elements are, a specified block of new elements is added to the end of the sequence. (The three dots
in the representation of each rule stand for the rest of the elements in the sequence.) The pictures at the top show the first
hundred steps in evolution according to various rules starting from a pair of black elements. The plots show the total lengths
of the sequences obtained in each case. Note that in case (c), all the elements are eventually removed from the sequence.
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Cyclic Tag Systems

The basic operation of the tag systems that we discussed in the previous
section is extremely simple. But it turns out that by using a slightly
different setup one can construct systems whose operation is in some
ways even simpler. In an ordinary tag system, one does not know in
advance which of several possible blocks will be added at each step. But
the idea of a cyclic tag system is to make the underlying rule already
specify exactly what block can be added at each step.

In the simplest case there are two possible blocks, and the rule
simply alternates on successive steps between these blocks, adding a
block at a particular step when the first element in the sequence at that

step is black. The picture below shows an example of how this works.

oERE] R

An example of a cyclic tag system. There are two cases in the rule,
and these cases are used on alternate steps, as indicated by the circle
icons on the left. In each case a single element is removed from the
beginning of the sequence, and then a new block is added at the end
whenever the element removed is black. The rule can be summarized
just by giving the blocks to be used in each case, as shown below.

The next page shows examples of several cyclic tag systems. In
cases (a) and (b) simple behavior is obtained. In case (c) the behavior is
slightly more complicated, but if the pattern is viewed in the
appropriate way then it turns out to have the same nested form as the
third neighbor-independent substitution system shown on page 83.

So what about cases (d) and (e)? In both of these, the sequences
obtained at successive steps grow on average progressively longer. But if
one looks at the fluctuations in this growth, as in the plots on the next

page, then one finds that these fluctuations are in many respects random.
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Examples of cyclic tag systems. In each case the initial condition consists of a single black element. In case (c), alternate steps in the
leftmost column (which in all cyclic tag systems determines the overall behavior) have the same nested form as the third
neighborindependent substitution system shown on page 83.
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Fluctuations in the growth of sequences for cyclic tag systems (d) and (e) above. The fluctuations are shown with respect to growth at
an average rate of half an element per step.
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Register Machines

All of the various kinds of systems that we have discussed so far in this
chapter can readily be implemented on practical computers. But none of
them at an underlying level actually work very much like typical
computers. Register machines are however specifically designed to be
very simple idealizations of present-day computers.

Under most everyday circumstances, the hardware construction
of the computers we use is hidden from us by many layers of software.
But at the lowest level, the CPUs of all standard computers have
registers that store numbers, and any program we write is ultimately
converted into a sequence of simple instructions that specify operations
to be performed on these registers.

Most practical computers have quite a few registers, and support
perhaps tens of different kinds of instructions. But as a simple
idealization one can consider register machines with just two registers—
each storing a number of any size—and just two kinds of instructions:
“increments” and “decrement-jumps”. The rules for such register
machines are then idealizations of practical programs, and are taken to
consist of fixed sequences of instructions, to be executed in turn.

Increment instructions are set up just to increase by one the
number stored in a particular register. Decrement-jump instructions, on
the other hand, do two things. First, they decrease by one the number in
a particular register. But then, instead of just going on to execute the
next instruction in the program, they jump to some specified other
point in the program, and begin executing again from there.

Since we assume that the numbers in our registers cannot be
negative, however, a register that is already zero cannot be decremented.
And decrement-jump instructions are then set up so that if they are
applied to a register containing zero, they just do essentially nothing:
they leave the register unchanged, and then they go on to execute the
next instruction in the program, without jumping anywhere.

This feature of decrement-jump instructions may seem like a
detail, but in fact it is crucial—for it is what makes it possible for our
register machines to take different paths depending on values in
registers through the programs they are given.
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Examples of simple register machines, set up to mimic the low-level operation of practical computers. The machines shown
have two registers, whose values on successive steps are given on successive lines down the page. Each machine follows
a fixed program given at the top. The program consists of a sequence of increment » and decrement-jump « instructions.
Instructions that are shown as light gray boxes refer to the first register; those shown as dark gray boxes refer to the second
one. On each line going down the page, the black dot on the left indicates which instruction in the program is being executed
at the corresponding step. With the particular programs shown here, each machine just executes successive instructions in

turn, jumping to the beginning again when it reaches the end of the program.

And with this setup, the pictures above show three very simple
examples of register machines with two registers. The programs for
each of the machines are given at the top, with » representing an
increment instruction, and <« a decrement-jump. The successive steps
in the evolution of each machine are shown on successive lines down
the page. The instruction being executed is indicated at each step by the
position of the dot on the left, while the numbers in each of the two
registers are indicated by the gray blocks on the right.

All the register machines shown start by executing the first
instruction in their programs. And with the particular programs used
here, the machines are then set up just to execute all the other
instructions in their programs in turn, jumping back to the beginning of
their programs whenever they reach the end.

Both registers in each machine are initially zero. And in the first
machine, the first register alternates between 0 and 1, while the second

remains zero. In the second machine, however, the first register again
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alternates between 0 and 1, but the second register progressively grows.
And finally, in the third machine both registers grow.

But in all these three examples, the overall behavior is essentially
repetitive. And indeed it turns out that among the 10,552 possible
register machines with programs that are four or fewer instructions
long, not a single one exhibits more complicated behavior.

However, with five instructions, slightly more complicated
behavior becomes possible, as the picture below shows. But even in this
example, there is still a highly regular nested structure.

I
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° A register machine that shows nested
L] ° rather than strictly repetitive behavior.
”7} ] ° The register machine has a program
I D which is five instructions long. It turns
e ° out that this program is one of only
° two (which differ just by interchange of
L ® the first and second registers) out of
° the 248,832 possible programs with
.. five instructions that yield anything
— ) other than strictly repetitive behavior.
I [ ]
°
°
o
°
°
°
o
°

And it turns out that even with up to seven instructions, none of
the 276,224,376 programs that are possible lead to substantially more
complicated behavior. But with eight instructions, 126 out of the
11,019,960,576 possible programs finally do show more complicated
behavior. The next page gives an example.
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(b)

A register machine whose behavior seems in some ways random. The program for this register machine is eight instructions long.
Testing all 11,019,960,576 possible programs of length eight revealed just this and 125 similar cases of complex behavior. Part (b)
shows the evolution in compressed form, with only those steps included at which either of the registers has just decreased to zero.
The values of the nonzero registers are shown using a logarithmic scale. Part (c) shows the instructions that are executed for the first
400 times that one of the registers is decreased to zero. Finally, part (d) gives the successive values attained by the second register at
steps where the first register has just decreased to zero. These values are given here as binary digit sequences. As discussed on page

122, the values can in fact be obtained by a simple arithmetic rule, without explicitly following each step in the evolution of the register
machine. If one value is n, then the next value is 3n/2 if nis even, and (3n+ 1)/2 if n is odd. The initial conditionis n=1.

Looking just at the ordinary evolution labelled (a), however, the
system might still appear to have quite simple and regular behavior. But
a closer examination turns out to reveal irregularities. Part (b) of the

picture shows a version of the evolution compressed to include only
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those steps at which one of the two registers has just decreased to zero.
And in this picture one immediately sees some apparently random
variation in the instructions that are executed.

Part (c) of the picture then shows which instructions are executed
for the first 400 times one of the registers has just decreased to zero.
And part (d) finally shows the base 2 digits of the successive values
attained by the second register when the first register has just decreased
to zero. The results appear to show considerable randomness.

So even though it may not be as obvious as in some of the other
systems we have studied, the simple register machine on the facing
page can still generate complex and seemingly quite random behavior.

So what about more complicated register machines?

An obvious possibility is to allow more than two registers. But it
turns out that very little is normally gained by doing this. With three
registers, for example, seemingly random behavior can be obtained with
a program that is seven rather than eight instructions long. But the
actual behavior of the program is almost indistinguishable from what
we have already seen with two registers.

Another way to set up more complicated register machines is to
extend the kinds of underlying instructions one allows. One can for
example introduce instructions that refer to two registers at a time,
adding, subtracting or comparing their contents. But it turns out that the
presence of instructions like these rarely seems to have much effect on
either the form of complex behavior that can occur, or how common it is.

Yet particularly when such extended instruction sets are used,
register machines can provide fairly accurate idealizations of the
low-level operations of real computers. And as a result, programs for
register machines are often very much like programs written in actual
low-level computer languages such as C, BASIC, Java or assembler.

In a typical case, each variable in such a program simply
corresponds to one of the registers in the register machine, with no
arrays or pointers being allowed. And with this correspondence, our
general results on register machines can also be expected to apply to

simple programs written in actual low-level computer languages.
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Practical details make it somewhat difficult to do systematic
experiments on such programs. But the experiments I have carried out
do suggest that, just as with simple register machines, searching
through many millions of short programs typically yields at least a few
that exhibit complex and seemingly random behavior.

Symbolic Systems

Register machines provide simple idealizations of typical low-level
computer languages. But what about Mathematica? How can one set up a
simple idealization of the transformations on symbolic expressions that
Mathematica does? One approach suggested by the idea of combinators
from the 1920s is to consider expressions with forms such as
ele[e]le]lle]le] and then to make transformations on these by repeatedly
applying rules such as e[x_][y_] - x[x[y]], where x_ and y_ stand for any
expression.

The picture below shows an example of this. At each step the
transformation is done by scanning once from left to right, and applying
the rule wherever possible without overlapping.

elelellelllelle]

elelle] e[e]][e] A sequence of steps in the evolution of a
7 . )
simple symbolic system. At each step each
AI’I ) — ple sy y P

7
Al
”””5“’]”5” /7, boxed region is transformed according to the

rule shown. This transformation corresponds

to applying the basic Mathematica operation
lelelelellelele]lle]]]]le] expression/. rule.
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The structure of expressions like those on the facing page is
determined just by their sequence of opening and closing brackets. And
representing these brackets by dark and light squares respectively, the

picture below shows the overall pattern of behavior generated.

E
£
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More steps in the evolution on the previous page, with opening brackets represented by dark squares and closing brackets by light
ones. In each case configurations wider than the picture are cut off on the right. For the initial condition from the previous page, the
system evolves after 264 steps to a fixed configuration involving 256 opening brackets followed by 256 closing brackets. For the initial
condition on the bottom right, the system again evolves to a fixed configuration, but now this takes 65,555 steps, and the configuration
involves 65,536 opening and closing brackets. Note that the evolution rules are highly non-local, and are rather unlike those, say, in a
cellular automaton. It turns out that this particular system always evolves to a fixed configuration, but for initial conditions of size n can
take roughly n iterated powers of 2 (or 2% ) to do so.
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With the particular rule shown, the behavior always eventually
stabilizes—though sometimes only after an astronomically long time.

But it is quite possible to find symbolic systems where this does
not happen, as illustrated in the pictures below. Sometimes the
behavior that is generated in such systems has a simple repetitive or
nested form. But often—just as in so many other kinds of systems—the
behavior is instead complex and seemingly quite random.
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elx_Jly_1- x[y[x]] elx_Jly_1-elxlellylel]] elx_]ly_1-elylele]le]][x]]

The behavior of various symbolic systems starting from the initial condition e[e[e][e]][e][e]. The plots at the bottom show the difference
in size of the expressions obtained on successive steps.
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Some Conclusions

In the chapter before this one, we discovered the remarkable fact that
even though their underlying rules are extremely simple, certain cellular
automata can nevertheless produce behavior of great complexity.

Yet at first, this seems so surprising and so outside our normal
experience that we may tend to assume that it must be a consequence
of some rare and special feature of cellular automata, and must not
occur in other kinds of systems.

For it is certainly true that cellular automata have many special
features. All their elements, for example, are always arranged in a rigid
array, and are always updated in parallel at each step. And one might
think that features like these could be crucial in making it possible to
produce complex behavior from simple underlying rules.

But from our study of substitution systems earlier in this chapter
we know, for example, that in fact it is not necessary to have elements
that are arranged in a rigid array. And from studying mobile automata,
we know that updating in parallel is also not critical.

Indeed, T specifically chose the sequence of systems in this
chapter to see what would happen when each of the various special
features of cellular automata were taken away. And the remarkable
conclusion is that in the end none of these features actually matter
much at all. For every single type of system in this chapter has
ultimately proved capable of producing very much the same kind of
complexity that we saw in cellular automata.

So this suggests that in fact the phenomenon of complexity is quite
universal—and quite independent of the details of particular systems.

But when in general does complexity occur?

The examples in this chapter suggest that if the rules for a
particular system are sufficiently simple, then the system will only ever
exhibit purely repetitive behavior. If the rules are slightly more
complicated, then nesting will also often appear. But to get complexity
in the overall behavior of a system one needs to go beyond some
threshold in the complexity of its underlying rules.

105



STEPHEN WOLFRAM ‘ANEW KIND OF SCIENCE

The remarkable discovery that we have made, however, is that
this threshold is typically extremely low. And indeed in the course of
this chapter we have seen that in every single one of the general kinds
of systems that we have discussed, it ultimately takes only very simple
rules to produce behavior of great complexity.

One might nevertheless have thought that if one were to increase
the complexity of the rules, then the behavior one would get would also
become correspondingly more complex. But as the pictures on the
facing page illustrate, this is not typically what happens.

Instead, once the threshold for complex behavior has been
reached, what one usually finds is that adding complexity to the
underlying rules does not lead to any perceptible increase at all in the
overall complexity of the behavior that is produced.

The crucial ingredients that are needed for complex behavior are,
it seems, already present in systems with very simple rules, and as a
result, nothing fundamentally new typically happens when the rules
are made more complex. Indeed, as the picture on the facing page
demonstrates, there is often no clear correlation between the
complexity of rules and the complexity of behavior they produce. And
this means, for example, that even with highly complex rules, very
simple behavior still often occurs.

One observation that can be made from the examples in this
chapter is that when the behavior of a system does not look complex, it
tends to be dominated by either repetition or nesting. And indeed, it
seems that the basic themes of repetition, nesting, randomness and
localized structures that we already saw in specific cellular automata in
the previous chapter are actually very general, and in fact represent the
dominant themes in the behavior of a vast range of different systems.

The details of the underlying rules for a specific system can
certainly affect the details of the behavior it produces. But what we
have seen in this chapter is that at an overall level the typical types of
behavior that occur are quite universal, and are almost completely
independent of the details of underlying rules.

And this fact has been crucial in my efforts to develop a coherent
science of the kind I describe in this book. For it is what implies that
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Examples of cellular automata with rules of varying complexity. The rules used are of the so-called totalistic type
described on page 60. With two possible colors, just 4 cases need to be specified in such rules, and there are 16 possible
rules in all. But as the number of colors increases, the rules rapidly become more complex. With three colors, there are 7
cases to be specified, and 2187 possible rules; with five colors, there are 13 cases to be specified, and 1,220,703,125
possible rules. But even though the underlying rules increase rapidly in complexity, the overall forms of behavior that we
see do not change much. With two colors, it turns out that no totalistic rules yield anything other than repetitive or nested
behavior. But as soon as three colors are allowed, much more complex behavior is immediately possible. Allowing four or
more colors, however, does not further increase the complexity of the behavior, and, as the picture shows, even with five

colors, simple repetitive and nested behavior can still occur.
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there are general principles that govern the behavior of a wide range of
systems, independent of the precise details of each system.

And it is this that means that even if we do not know all the
details of what is inside some specific system in nature, we can still
potentially make fundamental statements about its overall behavior.
Indeed, in most cases, the important features of this behavior will
actually turn out to be ones that we have already seen with the various

kinds of very simple rules that we have discussed in this chapter.

How the Discoveries in This Chapter Were Made

This chapter—and the last—have described a series of surprising
discoveries that T have made about what simple programs typically do. And
in making these discoveries I have ended up developing a somewhat new
methodology—that I expect will be central to almost any fundamental
investigation in the new kind of science that I describe in this book.

Traditional mathematics and the existing theoretical sciences
would have suggested using a basic methodology in which one starts
from whatever behavior one wants to study, then tries to construct
examples that show this behavior. But I am sure that had I used this
approach, I would not have got very far. For I would have looked only
for types of behavior that I already believed might exist. And in
studying cellular automata, this would for example probably have
meant that I would only have looked for repetition and nesting.

But what allowed me to discover much more was that I used instead
a methodology fundamentally based on doing computer experiments.

In a traditional scientific experiment, one sets up a system in
nature and then watches to see how it behaves. And in much the same
way, one can set up a program on a computer and then watch how it
behaves. And the great advantage of such an experimental approach is
that it does not require one to know in advance exactly what kinds of
behavior can occur. And this is what makes it possible to discover
genuinely new phenomena that one did not expect.

Experience in the traditional experimental sciences might suggest,
however, that experiments are somehow always fundamentally imprecise.
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For when one deals with systems in nature it is normally impossible to set
up or measure them with perfect precision—and indeed it can be a
challenge even to make a traditional experiment be at all repeatable.

But for the kinds of computer experiments I do in this book, there
is no such issue. For in almost all cases they involve programs whose
rules and initial conditions can be specified with perfect precision—so
that they work exactly the same whenever and wherever they are run.

In many ways these kinds of computer experiments thus manage
to combine the best of both theoretical and experimental approaches to
science. For their results have the kind of precision and clarity that one
expects of theoretical or mathematical statements. Yet these results can
nevertheless be found purely by making observations.

Yet as with all types of experiments it requires considerable skill
and judgement to know how to set up a computer experiment that will
yield meaningful results. And indeed, over the past twenty years or so my
own methodology for doing such experiments has become vastly better.

Over and over again the single most important principle that I
have learned is that the best computer experiments are ones that are as
simple and straightforward as possible. And this principle applies both
to the structure of the actual systems one studies—and to the
procedures that one uses for studying them.

At some level the principle of looking at systems with the
simplest possible structure can be viewed as an abstract aesthetic one.
But it turns out also to have some very concrete consequences.

For a start, the simpler a structure is, the more likely it is that it
will show up in a wide diversity of different places. And this means that
by studying systems with the simplest possible structure one will tend
to get results that have the broadest and most fundamental significance.

In addition, looking at systems with simpler underlying
structures gives one a better chance of being able to tell what is really
responsible for any phenomenon one sees—for there are fewer features
that have been put into the system and that could lead one astray.

At a purely practical level, there is also an advantage to studying

systems with simpler structures; for these systems are usually easier to
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implement on a computer, and can thus typically be investigated more
extensively with given computational resources.

But an obvious issue with saying that one should study systems
with the simplest possible structure is that such systems might just not
be capable of exhibiting the kinds of behavior that one might consider
interesting—or that actually occurs in nature.

And in fact, intuition from traditional science and mathematics
has always tended to suggest that unless one adds all sorts of
complications, most systems will never be able to exhibit any very
relevant behavior. But the results so far in this book have shown that
such intuition is far from correct, and that in reality even systems with
extremely simple rules can give rise to behavior of great complexity.

The consequences of this fact for computer experiments are quite
profound. For it implies that there is never an immediate reason to go
beyond studying systems with rather simple underlying rules. But to
absorb this point is not an easy matter. And indeed, in my experience
the single most common mistake in doing computer experiments is to
look at systems that are vastly more complicated than is necessary.

Typically the reason this happens is that one just cannot imagine
any way in which a simpler system could exhibit interesting behavior.
And so one decides to look at a more complicated system—usually with
features specifically inserted to produce some specific form of behavior.

Much later one may go back and look at the simpler system
again. And this is often a humbling experience, for it is common to find
that the system does in fact manage to produce interesting behavior—
but just in a way that one was not imaginative enough to guess.

So having seen this many times I now always try to follow the
principle that one can never start with too simple a system. For at
worst, one will just establish a lower limit on what is needed for
interesting behavior to occur. But much more often, one will instead
discover behavior that one never thought was possible.

It should however be emphasized that even in an experiment it is
never entirely straightforward to discover phenomena one did not
expect. For in setting up the experiment, one inevitably has to make
assumptions about the kinds of behavior that can occur. And if it turns
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out that there is behavior which does not happen to fit in with these
assumptions, then typically the experiment will fail to notice it.

In my experience, however, the way to have the best chance of
discovering new phenomena in a computer experiment is to make the
design of the experiment as simple and direct as possible. It is usually
much better, for example, to do a mindless search of a large number of
possible cases than to do a carefully crafted search of a smaller number.
For in narrowing the search one inevitably makes assumptions, and
these assumptions may end up missing the cases of greatest interest.

Along similar lines, I have always found it much better to look
explicitly at the actual behavior of systems, than to work from some
kind of summary. For in making a summary one inevitably has to pick
out only certain features, and in doing this one can remove or obscure
the most interesting effects.

But one of the problems with very direct experiments is that they
often generate huge amounts of raw data. Yet what I have typically
found is that if one manages to present this data in the form of pictures
then it effectively becomes possible to analyze very quickly just with
one’s eyes. And indeed, in my experience it is typically much easier to
recognize unexpected phenomena in this way than by using any kind of
automated procedure for data analysis.

It was in a certain sense lucky that one-dimensional cellular
automata were the first examples of simple programs that I
investigated. For it so happens that in these systems one can usually get
a good idea of overall behavior just by looking at an array of perhaps
10,000 cells—which can easily be displayed in few square inches.

And since several of the 256 elementary cellular automaton rules
already generate great complexity, just studying a couple of pages of
pictures like the ones at the beginning of this chapter should in
principle have allowed one to discover the basic phenomenon of
complexity in cellular automata.

But in fact I did not make this discovery in such a straightforward
way. I had the idea of looking at pictures of cellular automaton
evolution at the very beginning. But the technological difficulty of

producing these pictures made me want to reduce their number as
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much as possible. And so at first I looked only at the 32 rules which had
left-right symmetry and made blank backgrounds stay unchanged.

Among these rules I found examples of repetition and nesting.
And with random initial conditions, I found more complicated behavior.
But since I did not expect that any complicated behavior would be
possible with simple initial conditions, I did not try looking at other
rules in an attempt to find it. Nevertheless, as it happens, the first paper
that I published about cellular automata—in 1983—did in fact include a
picture of rule 30 from page 27, as an example of a non-symmetric rule.
But the picture showed only 20 steps of evolution, and at the time I did
not look carefully at it, and certainly did not appreciate its significance.

For several years, I did progressively more sophisticated computer
experiments on cellular automata, and in the process I managed to
elucidate many of their properties. But finally, when technology had
advanced to the point where it became almost trivial for me to do so, I
went back and generated some straightforward pages of pictures of all
256 elementary rules evolving from simple initial conditions. And it
was upon seeing these pictures that I finally began to appreciate the
remarkable phenomenon that occurs in systems like rule 30.

Seven years later, after I had absorbed some basic intuition from
looking at cellular automata like rule 30, I resolved to find out whether
similar phenomena also occurred in other kinds of systems. And the
first such systems that I investigated were mobile automata.

Mobile automata in a sense evolve very slowly relative to cellular
automata, so to make more efficient pictures I came up with a scheme
for showing their evolution in compressed form. I then started off by
generating pictures of the first hundred, then the first thousand, then
the first ten thousand, mobile automata. But in all of these pictures I
found nothing beyond repetitive and nested behavior.

Yet being convinced that more complicated behavior must be
possible, T decided to persist, and so I wrote a program that would
automatically search through large numbers of mobile automata. I set
up various criteria for the search, based on how I expected mobile
automata could behave. And quite soon, I had made the program search

a million mobile automata, then ten million.

112



THE WORLD OF SIMPLE PROGRAMS CHAPTER 3

But still I found nothing.

So then I went back and started looking by eye at mobile
automata with large numbers of randomly chosen rules. And after some
time what I realized was that with the compression scheme I was using
there could be mobile automata that would be discarded according to
my search criteria, but which nevertheless still had interesting
behavior. And within an hour of modifying my search program to
account for this, I found the example shown on page 74.

Yet even after this, there were still many assumptions implicit in
my search program. And it took some time longer to identify and
remove them. But having done so, it was then rather straightforward to
find the example shown on page 75.

A somewhat similar pattern has been repeated for most of the
other systems described in this chapter. The main challenge was always
to avoid assumptions and set up experiments that were simple and
direct enough that they did not miss important new phenomena.

In many cases it took a large number of iterations to work out the
right experiments to do. And had it not been for the ease with which I
could set up new experiments using Mathematica, it is likely that I
would never have gotten very far in investigating most of the systems
discussed in this chapter. But in the end, after running programs for a
total of several years of computer time—corresponding to more than a
million billion logical operations—and creating the equivalent of tens
of thousands of pages of pictures, I was finally able to find all of the
various examples shown in this chapter and the ones that follow.
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Systems Based on Numbers

The Notion of Numbers

Much of science has in the past ultimately been concerned with trying
to find ways to describe natural systems in terms of numbers.

Yet so far in this book I have said almost nothing about numbers.
The purpose of this chapter, however, is to investigate a range of
systems that are based on numbers, and to see how their behavior
compares with what we have found in other kinds of systems.

The main reason that systems based on numbers have been so
popular in traditional science is that so much mathematics has been
developed for dealing with them. Indeed, there are certain kinds of
systems based on numbers whose behavior has been analyzed almost
completely using mathematical methods such as calculus.

Inevitably, however, when such complete analysis is possible, the
final behavior that is found is fairly simple.

So can systems that are based on numbers ever in fact yield
complex behavior? Looking at most textbooks of science and
mathematics, one might well conclude that they cannot. But what one
must realize is that the systems discussed in these textbooks are usually
ones that are specifically chosen to be amenable to fairly complete
analysis, and whose behavior is therefore necessarily quite simple.

And indeed, as we shall see in this chapter, if one ignores the

need for analysis and instead just looks at the results of computer
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experiments, then one quickly finds that even rather simple systems
based on numbers can lead to highly complex behavior.

But what is the origin of this complexity? And how does it relate
to the complexity we have seen in systems like cellular automata?

One might think that with all the mathematics developed for
studying systems based on numbers it would be easy to answer these
kinds of questions. But in fact traditional mathematics seems for the
most part to lead to more confusion than help.

One basic problem is that numbers are handled very differently in
traditional mathematics from the way they are handled in computers
and computer programs. For in a sense, traditional mathematics makes
a fundamental idealization: it assumes that numbers are elementary
objects whose only relevant attribute is their size. But in a computer,
numbers are not elementary objects. Instead, they must be represented
explicitly, typically by giving a sequence of digits.

The idea of representing a number by a sequence of digits is
familiar from everyday life: indeed, our standard way of writing
numbers corresponds exactly to giving their digit sequences in base 10.
What base 10 means is that for each digit there are 10 possible choices:

Representations of the number 3829 in various bases. The 3829= _3x1000 + §x100 + 2x10 + 9x1
most familiar case is base 10, where starting from the right 3 8 2 9 ‘
successive digits correspond to units, tens, hundreds and so 3829= 5x729 + 2x8] + 2x9 Axi
on. In base 10, there are 10 possible digits: O through 9. In 5 2 2 4 ‘
other bases, there are a different number of possible digits. In
3829= 7x5612 + 3x64 + 6x8 5x1
base 2, as used in practical computers, there are just two 7 3 6 5 ‘
possible digits: 0 and 1. And in this base, successive digits
starting from the right have coefficients 1, 2, 4=2x2, 3629= 1x2401 + 4x543 + 1x49 + 1x7 + 0x1
8 =2x2x2, etc. f < g f 9 ‘
3829= 2x1296 + 5 x216 + 4x36 + 2x6 1x1
2 5 4 2 7 ‘
3829= 1x3125+ 1x625 + 0x1256 + 3x25 + 0x65 4x1
‘ 1 1 0 3 0 4 ‘
3829= 3x1024 + 2x256 + 3x64 + 3x16 + 1x4 1x1
3 2 3 3 1 1 ‘
3829= 1x2187 + 2x729 + 0x243 + 2x81 + 0x27 + 2x9 + 1x3 1x1
1 2 0 2 0 2 1 1 ‘
3829= 1x2048 + 1x1024 + 1x512 + 0x256 + 1x128 + 1x64 + 1x32 + 1x16 + 0x8 + 1x4 + 0x2 1x1
‘ 1 1 ‘ 1 ‘ 0 7 1 1 1 0 1 0 1 ‘
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0 through 9. But as the picture at the bottom of the facing page shows,
one can equally well use other bases. And in practical computers, for
example, base 2 is almost always what is used.

So what this means is that in a computer numbers are

DNODGH DN

represented by sequences of 0’s and 1’s, much like sequences of white
and black cells in systems like cellular automata. And operations on
numbers then correspond to ways of updating sequences of 0’s and 1’s.

In traditional mathematics, the details of how operations
performed on numbers affect sequences of digits are usually considered
quite irrelevant. But what we will find in this chapter is that precisely
by looking at such details, we will be able to see more clearly how
complexity develops in systems based on numbers.

In many cases, the behavior we find looks remarkably similar to
what we saw in the previous chapter. Indeed, in the end, despite some

confusing suggestions from traditional mathematics, we will discover

that the general behavior of systems based on numbers is very similar

to the general behavior of simple programs that we have already

discussed.

Elementary Arithmetic

The operations of elementary arithmetic are so simple that it
seems impossible that they could ever lead to behavior of any great
complexity. But what we will find in this section is that in fact they can.

To begin, consider what is perhaps the simplest conceivable
arithmetic process: start with the number 1 and then just progressively
add 1 at each of a sequence of steps.

The result of this process is to generate the successive numbers
1,2,3,4,5 6,7,8, ... The sizes of these numbers obviously form a

very simple progression.

But if one looks not at these overall sizes, but rather at digit Digit sequences of

successive numbers

written in base 2. The
overall pattern has an
intricate nested form.

sequences, then what one sees is considerably more complicated. And
in fact, as the picture on the right demonstrates, these successive digit

sequences form a pattern that shows an intricate nested structure.
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The pictures below show what happens if one adds a number
other than 1 at each step. Near the right-hand edge, each pattern is
somewhat different. But at an overall level, all the patterns have exactly

the same basic nested structure.
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Digit sequences in base 2 of numbers obtained by starting with 1 and then successively adding a
constant at each step. All these patterns ultimately have the same overall nested form.

If instead of addition one uses multiplication, however, then the
results one gets can be very different. The first picture at the top of the
facing page shows what happens if one starts with 1 and then
successively multiplies by 2 at each step.

It turns out that if one represents numbers as digit sequences in
base 2, then the operation of multiplying by 2 has a very simple effect:
it just shifts the digit sequence one place to the left, adding a 0 digit on
the right. And as a result, the overall pattern obtained by successive

multiplication by 2 has a very simple form.
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Patterns produced by starting with the number 1, and then successively multiplying by a factor of 2, and a factor of 3. In each
case, the digit sequence of the number obtained at each step is shown in base 2. Multiplication by 2 turns out to correspond just
to shifting all digits in base 2 one position to the left, so that the overall pattern produced in this case is very simple. But
multiplication by 3 yields a much more complicated pattern, as the picture on the right shows. Note that in these pictures the
complete numbers obtained at each step correspond respectively to the successive integer powers of 2 and of 3.

But if the multiplication factor at each step is 3, rather than 2,
then the pattern obtained is quite different, as the second picture above
shows. Indeed, even though the only operation used was just simple
multiplication, the final pattern obtained in this case is highly complex.

The picture on the next page shows more steps in the evolution of
the system. At a small scale, there are some obvious triangular and
other structures, but beyond these the pattern looks essentially random.

So just as in simple programs like cellular automata, it seems
that simple systems based on numbers can also yield behavior that is
highly complex and apparently random.

But we might imagine that the complexity we see in pictures like
the one on the next page must somehow be a consequence of the fact that
we are looking at numbers in terms of their digit sequences—and would
not occur if we just looked at numbers in terms of their overall size.

A few examples, however, will show that this is not the case.

To begin the first example, consider what happens if one
multiplies by 3/2, or 1.5, at each step. Starting with 1, the successive
numbers that one obtains in this way are 1, 3/2=1.5, 9/4 =2.25,
27/8 =3.375,81/16 = 5.0625,243/32 = 7.59375,729/64 = 11.390625, ...
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The first 500 powers of 3, shown in base 2. Some small-scale structure is visible, but on a larger scale the pattern seems for all practical
purposes random. Note that the pattern shown here has been truncated at the edge of the page on the left, although in fact the whole
pattern continues to expand to the left forever with an average slope of Log[2, 3]~ 1.58.

-
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The picture below shows the digit sequences for these numbers
given in base 2. The digits that lie directly below and to the left of the
original 1 at the top of the pattern correspond to the whole number part
of each successive number (e.g. 3 in 3.375), while the digits that lie to

the right correspond to the fractional part (e.g. 0.375 in 3.375).

Successive powers of 3/2, shown in base 2. Multiplication by 3/2 can be thought of as multiplication by 3 combined with division by 2.
But division by 2 just does the opposite of multiplication by 2, so in base 2 it simply shifts all digits one position to the right. The overall
pattern is thus a shifted version of the pattern shown on the facing page.

And instead of looking explicitly at the complete pattern of digits,
one can consider just finding the size of the fractional part of each
successive number. These sizes are plotted at the top of the next page.
And the picture shows that they too exhibit the kind of complexity and

apparent randomness that is evident at the level of digits.
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Sizes of the fractional parts of successive powers of 3/2. These sizes are completely independent of what base is used to represent
the numbers. Only the dots are significant; the shading and lines between them are just included to make the plot easier to read.

The example just given involves numbers with fractional parts.

But it turns out that similar phenomena can also be found in systems

that involve only whole numbers.

As a first example, consider a slight variation on the operation of

multiplying by 3/2 used above: if the number at a particular step is even

(divisible by 2), then simply multiply that number by 3/2, getting a

whole number as the result. But if the number is odd, then first add 1—

S0 as to get an even number—and only then multiply by 3/2.

110110001101001107010011010010100000710700000001011111001101011010100710011110110
11111101000001101101011001001111000110001110111107001010110111010111070707000000
00701011111000001100070101111077000001001100011111110000101100110001101110110000
10101010110070700011000100011011010110001107001010101110101000010110701070000000
00110001101101111001100111070000101110011010100011000000110101101070000100001001
10000010000701170117100100110111100101101100001111000001001111101110071101071010010
10000100111100001101707000011100110011000100700111100000101010010011011100111111
001101117000100101110710111107000710101100100011100707011011017000000000001001101
10107011010011111011070001110101110100000070111110011010010011011011111070070001
00707000010110100710000700700101001100011001011110010710017000111000100010011000
17000001000111010111110111010101100101011007000070700000010101110001111110001111
01110001011010010110070070070071110100001101111001100707010110011001111111000007
00111110110110111101111170700110001001001110111000001101111011010101000010000700
07001100111110000011111001110011111070001010111100001101110101100011011110070000
111111000101111111107010110700000101100001001101101111000000110111100107107070001
111100110011111001107000000011111011111101700000000111000011000111010110111100171
110010000101100011010110001001000111011111170701011101100100110001001101170001000
010101010101101100111007007000111111001101001101101101110101011100100111010711110

Results of starting with the number 1, then applying the following rule: if
the number at a particular step is even, multiply by 3/2; otherwise, add 1,
then multiply by 3/2. This procedure yields a succession of whole numbers
whose digit sequences in base 2 are shown at the right. The rightmost
digits obtained at each step are shown above. The digit is 0 when the
number is even and 1 when it is odd, and, as shown, the digits alternate in
a seemingly random way. It turns out that the system described here is
closely related to one that arose in studying the register machine shown
on page 100. The system here can be represented by the rule
n- If[EvenQ[n], 3n/2, 3(n+1)/2], while the one on page 100 follows the
rule n- If[EvenQ[n], 3n/2, (3n+1)/2]. After the first step these systems
give the same sequence of numbers, except for an overall factor of 3.
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This procedure is always guaranteed to give a whole number. And
starting with 1, the sequence of numbers one getsis 1, 3, 6,9, 15, 24, 36,
54,81, 123, 186, 279, 420, 630, 945, 1419, 2130, 3195, 4794, ...

Some of these numbers are even, while some are odd. But as the
results at the bottom of the facing page illustrate, the sequence of which
numbers are even and which are odd seems to be completely random.

Despite this randomness, however, the overall sizes of the
numbers obtained still grow in a rather regular way. But by changing
the procedure just slightly, one can get much less regular growth.

As an example, consider the following procedure: if the number
obtained at a particular step is even, then multiply this number by 5/2;
otherwise, add 1 and then multiply the result by 1/2.

If one starts with 1, then this procedure simply gives 1 at every
step. And indeed with many starting numbers, the procedure yields
purely repetitive behavior. But as the picture below shows, it can also

give more complicated behavior.

7 2 3 4 5 6 7 8 9 10
Results of applying the rule n - If[EvenQ[n], 5n/2, (n+ 1)/2], starting with different initial choices of
n. In many cases, the behavior obtained is purely repetitive. But in some cases it is not.

Starting for example with the number 6, the sizes of the numbers
obtained on successive steps show a generally increasing trend, but
there are considerable fluctuations, and these fluctuations seem to be
essentially random. Indeed, even after a million steps, when the
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0 200 400 600 800 1000

The results of following the same rule as on the previous page, starting from the value 6. Plotted on the right are the
overall sizes of the numbers obtained for the first thousand steps. The plot is on a logarithmic scale, so the height of each
point is essentially the length of the digit sequence for the number that it represents—or the width of the row on the left.

number obtained has 48,554 (base 10) digits, there is still no sign of
repetition or of any other significant regularity.

So even if one just looks at overall sizes of whole numbers it is
still possible to get great complexity in systems based on numbers.

But while complexity is visible at this level, it is usually
necessary to go to a more detailed level in order to get any real idea of
why it occurs. And indeed what we have found in this section is that if
one looks at digit sequences, then one sees complex patterns that are
remarkably similar to those produced by systems like cellular automata.

The underlying rules for systems like cellular automata are
however usually rather different from those for systems based on
numbers. The main point is that the rules for cellular automata are
always local: the new color of any particular cell depends only on the
previous color of that cell and its immediate neighbors. But in systems
based on numbers there is usually no such locality.

One knows from hand calculation that even an operation such as
addition can lead to “carry” digits which propagate arbitrarily far to the

left. And in fact most simple arithmetic operations have the property
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that a digit which appears at a particular position in their result can
depend on digits that were originally far away from it.

But despite fundamental differences like this in underlying rules,
the overall behavior produced by systems based on numbers is still very
similar to what one sees for example in cellular automata.

So just like for the various kinds of programs that we discussed in
the previous chapter, the details of underlying rules again do not seem
to have a crucial effect on the kinds of behavior that can occur.

Indeed, despite the lack of locality in their underlying rules, the
pictures below and on the pages that follow show that it is even
possible to find systems based on numbers that exhibit something like

the localized structures that we saw in cellular automata on page 32..

An example of a system defined by the
following rule: at each step, take the number
obtained at that step and write its base 2
digits in reverse order, then add the resulting
number to the original one. For many
possible starting numbers, the behavior
obtained is very simple. This picture shows
what happens when one starts with the
number 16. After 180 steps, it turns out that
all that survives are a few objects that one
can view as localized structures.
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A thousand steps in
the evolution of a
system with the same
rule as on the previous
page, but now starting
with the number 512.
Localized structures are
visible, but the overall
pattern never seems to
take on any kind of
simple repetitive form.

STEPHEN WOLFRAM

A NEW

KIND OF

SCIENCE

126




SYSTEMS

BASED ON NUMBERS

CHAPTER

4

127

Continuation  of the
pattern on the facing
page, starting at the
millionth  step.  The
picture  shows the
right-hand edge of the
pattern; the complete
pattern extends about
700 times the width of
the page to the left.
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Recursive Sequences

In the previous section, we saw that it is possible to get behavior
of considerable complexity just by applying a variety of operations
based on simple arithmetic. In this section what I will show is that with
the appropriate setup just addition and subtraction turn out to be in a
sense the only operations that one needs.

The basic idea is to consider a sequence of numbers in which
there is a definite rule for getting the next number in the sequence from
previous ones. It is convenient to refer to the first number in each
sequence as f[1], the second as f[2], and so on, so that the 7" number is
denoted f[n]. And with this notation, what the rule does is to specify
how f[n] should be calculated from previous numbers in the sequence.

In the simplest cases, f[n] depends only on the number
immediately before it in the sequence, denoted f[n — 1]. But it is also
possible to set up rules in which f[#] depends not only on f[n — 1], but
also on f[n — 2], as well as on numbers still earlier in the sequence.

The table below gives results obtained with a few specific rules. In
all the cases shown, these results are quite simple, consisting of

sequences that increase uniformly or fluctuate in a purely repetitive way.

fin]=1+fn-1], fl1]=1
@[ 1]2]3]4]5]6]7]8]9]10]11]12]13]14] 15] 16 [ 17] 18] 19] 20| 21]22] 23] 24] 25] 26 | 27] 28] 29] 30| 31] 32] 33] 34] 35| 36 [ 37] 38] ...

fln]=1-f[n-1], f[1]=1
w[1]o]1]o]1]o]1]o]1]o]1]o1]o]7]o]1]o]1]o]1]o]7]o]1]o]1]o] 1o 1]o]1][o]7]o]1]o]1]o]1]o]1]o]1]o]1]0] -

fn]=2f[n-1], f[1]=1
te)[ 1]2]4]8]16]32]64] 128|256 | 512] 1024] 2048 4096 | 8192 | 16384] 32768 | 65536 | 131072] 262144 | 524288 | 1048576 | 2097152] ...

fln]=fln-1]+f[n-2] f[1]=1, f[2] =1
@[ 1]1]2]3]5]8]13]21]34]55]89] 144 233] 377 |610] 987 | 1597 | 2584 4181] 6765 10946 | 17711] 28657 | 46368 75025 | 121393 ..

fIn]=fln-1]-fIn-2], f[1]=1, f[2] =1
e[ 1]1]o]-1]-1]o]1]1Jo]-1][-1]o]7]1]o]-1[-1]o]7[7]o]-1[-1]o]1]7]o]-1][-1Jo]1]1]o]-1][-1]o] 1 ][1]o[-1]-1]o] 1 ]1] -..

fIn]=-f[n-1]+f[n-2], f[1]=1, f[2] =1
w [ 1]1]o]1]-1]2]-3]5]-8]13]-21]34]-55]89]-144]233]-377 610 |-987 | 1597 | -2584] 4181]-6765] 10946 | -17711] 28657 -46368] ...

Examples of some simple recursive sequences. The n'" element in each sequence is denoted f/nJ, and the rule specifies how
this element is determined from previous ones. With all the rules shown here, successive elements either increase smoothly or
fluctuate in a purely repetitive way. Sequence (c) is the powers of two; (d) is the so-called Fibonacci sequence, related to powers
of the golden ratio (7 +\5 )/2 ~ 1.618. All rules of the kind shown here lead to sequences where f[n] can be expressed in terms
of a simple sum of powers of the form a”.
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But it turns out that with slightly more complicated rules it is
possible to get much more complicated behavior. The key idea is to
consider rules which look at numbers that are not just a fixed distance
back in the sequence. And what this means is that instead of depending
only on quantities like f[n — 1] and f[n — 2], the rule for f[#n] can also
for example depend on a quantity like f[n — f[n — 1]].

There is some subtlety here because in the abstract nothing
guarantees that n — f[n — 1] will necessarily be a positive number. And
if it is not, then results obtained by applying the rule can involve
meaningless quantities such as f[0], f[-1] and f[-2].

fIn]=1+fln-fln-1]], f[1]=1
@[ 1]2]2]3]3]3]4]4]4]4]5]5]5]5]5]6]6]6]6]6]6]7[7][7]7]7]7]7]8]8]8]8]8]8]8][8]9]9]9]9]9]9]9]9]9]70]10] 0] ...

fIn]=2+fln-f[n-11], f[1]=1, f[2]=1
w [ 1]1]3]3]3]5]3]5]5]5]7]5]7]5]7]7]7]9]7]9]7]9]7]9]o]o]11]e] 7]l 11]9]11]9] 1] 11 1113 11][13]17]13]11]13] ...

fIn] = f[f[n-1]1+f[n~fln-1]], f[1]=1, f[2] =1
e[ 1]1]2]2]3]4]4]4]5]6]7]7]8]8]8]8]9]10]11]12]12]13] 14| 14] 15] 15[ 15] 16] 16] 16] 16] 16 [ 17] 18] 19]20] 21 ] 21]22] 23] ...

fIn] =fln-fln-111+fln-fln-2]-1], f[1] =1, f[2] =1
@ 1]1]2]2][3][4]4]4]5]6]6]7]8]8]8]8]9]10]70]11]12]12]12]13] 14] 14[ 15] 16] 16] 16] 16] 16 [ 17] 18] 18] 19] 20] 20] 20] 21] ...

fIn] = fln-f[n-1]]+f[n~fln-2]], f[1]=1, f[2] =1
e[ 1]1]2]3]3]4]5]5]6]6]6]8]8]s]10]9]10]11]11]12[12]12]12] 16]14] 14] 16] 16] 16] 16]20 17 [ 17] 20] 21 19] 20[ 22] 21] 22] ...

fInl =fln-fln-1]-1]+fln-f[n-2]-1], f[1]=1, f[2] =1
m[1]1]2]2]2]4][3]4]4]4]8]5]5]8]8]6]8]12[8] 11]9]9]10]13]16]9]12]20] 10]12]23] 12 15]21[13[17] 18] 19] 19]22] 21]19] ...

fIn] =f[f[n-1]11+fIn-fln-2]-1], f[1]=1, f[2] =1
w/|[1]1]2]2]2]3]4]4]4]4]5]6]7]8]8]8]8]8]8]9]10]10]10] 11]13]15]15] 14] 15] 16] 16]16]16]16]16] 16 [17] 18] 18] 18] 18] ...

fIn]=f[f[n-1]1+f[n-2fn-1]+1], f[1]=1, f[2] =1
m[1]1]2]2]2]3]3]4]3]4]4]4]5]4]6]5]6]6]7]6]7]6]7][7]7]8]8]9]7][9]7]10]8]11]8]11][9]10]10] 11]10] 1110 71 1] ...

14 F
12 L@ 18 ) 50 | (c) 50 (a)
10 g t w0k 40
8 ok 30 ¢ 30
6 20 20
4 6
2 3 0 ¢ 10
0 0

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
60 F (o) 20 £ (n)
50 b
40 ®
30 10
20
10 5
0

0 25 50 75 100 0 25 50 75 100

Examples of sequences generated by rules that do not depend only on elements a fixed distance back. Most such rules eventually
end up involving meaningless quantities such as /0] and f[-1], but the particular rules shown here all avoid this problem.
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L (c) fIn]= flf[n-11]+f[n~f[n-1]1] (f[n]-n/2 shown)
ZbO 4bD 62)0 SbO 70‘00 12‘00 74‘00 76100 18‘00 20‘00
4 (d) fIn] = f[n—f[n=1]]+f[n—f[n=2n]-1] (f[n]—n/2 shown)
200 400 600 800 1000 1200 1400 1600 1800 2000
(e) f[n]= fln-fln-1]]+f[n—-f[n-2]] (f[n]-n/2 shown)
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200 400 600 800 1000 1200 1400 1600 1800 2000
(f) fIn] = f[n=f[n=1]=1]+f[n—-f[n]-2]-1] (f[n]-n/2 shown)
! {8110 . W 04 AT 0 OGO il
I " (1 fl H I I H FATT TN TR Il {I Il “ RN 1A VAT
200 400 600 800 1000 1200 1400 1600 1800 2000
E (g) fIn] = f[f[n=1]]+f[n-f[n-2]-1] (f[n]-n/2 shown)
Il L Hhh Lwl [l \\Mlnhmwm [N
HHWHW w T i r’
200 400 600 800 1000 1200 1400 1600 1800 2000
[ (h) fIn]= fIfln-1]]+f[n-2f[n-1]+1] (f[n]-0.42 n°®'® shown)
a1 .ﬂm.m.wu‘_m il M‘.M.Ml I .J‘lﬂm Wk mmmmh\ A LT T R A
I ‘]"‘ |‘FU "[\'UIH'V"U] Il |‘l | HW m‘lm’l"!w HI “' [l \n! W‘
2(‘70 AbD 5270 8270 7600 12‘00 74‘00 76‘00 1§00 2600

Fluctuations in the overall increase of sequences from the previous page. In cases (c) and (d), the fluctuations have a regular nested
form, and turn out to be directly related to the base 2 digit sequence of n. In the other cases, the fluctuations are more
complicated, and seem in many respects random. All the rules shown start with f[1] =f[2]=1.
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For the vast majority of rules written down at random, such
problems do indeed occur. But it is possible to find rules in which they
do not, and the pictures on the previous two pages show a few examples
I have found of such rules. In cases (a) and (b), the behavior is fairly
simple. But in the other cases, it is considerably more complicated.

There is a steady overall increase, but superimposed on this
increase are fluctuations, as shown in the pictures on the facing page.

In cases (c) and (d), these fluctuations turn out to have a very
regular nested form. But in the other cases, the fluctuations seem
instead in many respects random. Thus in case (f), for example, the
number of positive and negative fluctuations appears on average to be
equal even after a million steps.

But in a sense one of the most surprising features of the facing
page is that the fluctuations it shows are so violent. One might have
thought that in going say from f[2000] to f[2001] there would only ever
be a small change. After all, between n = 2000 and 2001 there is only a
0.05% change in the size of n.

But much as we saw in the previous section it turns out that it is
not so much the size of # that seems to matter as various aspects of its
representation. And indeed, in cases (c) and (d), for example, it so
happens that there is a direct relationship between the fluctuations in
fIn] and the base 2 digit sequence of 7.

In case (d), the fluctuation in each f[#] turns out to be essentially
just the number of 1’s that occur in the base 2 digit sequence for n. And
in case (c), the fluctuations are determined by the total number of 1’s
that occur in the digit sequences of all numbers less than 7.

There are no such simple relationships for the other rules shown
on the facing page. But in general one suspects that all these rules can
be thought of as being like simple computer programs that take some
representation of n as their input.

And what we have discovered in this section is that even though
the rules ultimately involve only addition and subtraction, they
nevertheless correspond to programs that are capable of producing

behavior of great complexity.
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The Sequence of Primes

In the sequence of all possible numbers 1, 2, 3, 4,5, 6, 7, 8, ... most are
divisible by others—so that for example 6 is divisible by 2 and 3. But
this is not true of every number. And so for example 5 and 7 are not
divisible by any other numbers (except trivially by 1). And in fact it has
been known for more than two thousand years that there are an infinite
sequence of so-called prime numbers which are not divisible by other
numbers, the first few being 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
The picture below shows a simple rule by which such primes can
be obtained. The idea is to start out on the top line with all possible
numbers. Then on the second line, one removes all numbers larger than 2
that are divisible by 2. On the third line one removes numbers divisible

by 3, and so on. As one goes on, fewer and fewer numbers remain. But

some numbers always remain, and these numbers are exactly the primes.
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A filtering process that yields the prime numbers. One starts on the top line with all numbers between 1 and 100. Then on the
second line, one removes numbers larger than 2 that are divisible by 2—as indicated by the gray dots. On the third line, one
removes numbers larger than 3 that are divisible by 3. If one then continues forever, there are some numbers that always remain,
and these are exactly the primes. The process shown is essentially the sieve of Eratosthenes, already known in 200 BC.

Given the simplicity of this rule, one might imagine that the
sequence of primes it generates would also be correspondingly simple.
But just as in so many other examples in this book, in fact it is not. And
indeed the plots on the facing page show various features of this
sequence which indicate that it is in many respects quite random.
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0 40 60 80 100 0 50 100 150 200
(a) The sequence of primes (Prime[n]) (b) The number of primes smaller than n (PrimePi[n]),
together with the estimate LogIntegral [n]
n n n n n n n n n
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
(c) The difference Logintegral [n] - PrimePi[n]
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
(d) The excess of primes of the form 3 k - 1 over ones of the form 3k + 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
(e) The excess of primes of the form 4 k - 1 over ones of the form 4 k + 1
n n n n n n n n n
100 200 300 400 500 600 700 800 900 1000

(f) Gaps between successive primes

Features of the sequence of primes. Despite the simplicity of the rule on the facing page that generates the primes, the actual
sequence of primes that is obtained seems in many respects remarkably random.
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The examples of complexity that I have shown so far in this book
are almost all completely new. But the first few hundred primes were
no doubt known even in antiquity, and it must have been evident that
there was at least some complexity in their distribution.

However, without the whole intellectual structure that I have
developed in this book, the implications of this observation—and its
potential connection, for example, to phenomena in nature—were not
recognized. And even though there has been a vast amount of
mathematical work done on the sequence of primes over the course of
many centuries, almost without exception it has been concerned not
with basic issues of complexity but instead with trying to find
specific kinds of regularities.

Yet as it turns out, few regularities have in fact been found, and
often the results that have been established tend only to support the
idea that the sequence has many features of randomness. And so, as one
example, it might appear from the pictures on the previous page that (c),
(d) and (e) always stay systematically above the axis. But in fact with
considerable effort it has been proved that all of them are in a sense
more random—and eventually cross the axis an infinite number of
times, and indeed go any distance up or down.

So is the complexity that we have seen in the sequence of primes
somehow unusual among sequences based on numbers? The pictures
on the facing page show a few other examples of sequences generated
according to simple rules based on properties of numbers.

And in each case we again see a remarkable level of complexity.

Some of this complexity can be understood if we look at each
number not in terms of its overall size, but rather in terms of its digit
sequence or set of possible divisors. But in most cases—often despite
centuries of work in number theory—considerable complexity remains.

And indeed the only reasonable conclusion seems to be that just
as in so many other systems in this book, such sequences of numbers
exhibit complexity that somehow arises as a fundamental consequence
of the rules by which the sequences are generated.
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(a) The number of divisors of n (including n)
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(b) The sum of the divisors of n (excluding n) minus n

100 200 400 500 600 700 800 900 1000

(c) The number of ways of expressing n as a sum of three squares
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0 100 200 300 400 500 600 700 800 900 1000
(d) The number of ways of expressing n as a sum of four squares
200 400 600 800 1000 1200 1400 1600 1800 2000

(e) The number of ways of expressing an even number n as the sum of two primes

Sequences based on various simple properties of numbers. Extensive work in number theory has managed to establish only a few
properties of these. It is for example known that (d) never reaches zero, while curve (c) reaches zero only for numbers of the form
4" (8s+ 7). Sequence (b) is zero at so-called perfect numbers. Even perfect numbers always have a known form, but whether any odd
perfect numbers exist is a question that has remained unresolved for more than two thousand years. The claim that sequence (e)
never reaches zero is known as Goldbach’s Conjecture. It was made in 1742 but no proof or counterexample has ever been found.
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Mathematical Constants

The last few sections have shown that one can set up all sorts of
systems based on numbers in which great complexity can occur. But it
turns out that the possibility of such complexity is already suggested by
some well-known facts in elementary mathematics.

The facts in question concern the sequences of digits in numbers
like 7 (pi). To a very rough approximation, 7 is 3.14. A more accurate
approximation is 3.1415926535897932384626433832.7950288.

But how does this sequence of digits continue?

One might suppose that at some level it must be quite simple and
regular. For the value of  is specified by the simple definition of being
the ratio of the circumference of any circle to its diameter.

But it turns out that even though this definition is simple, the
digit sequence of 7 is not simple at all. The facing page shows the first
4000 digits in the sequence, both in the usual case of base 10, and in
base 2. And the picture below shows a pictorial representation of the

first 20,000 digits in the sequence.

JNAN

50k

-100 -

I I I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

50}

-100 ¢

L
10000

I I I I I I I I I I
11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

A pictorial representation of the first 20,000 digits of 7 in base 2. The curve drawn goes up every time a digit is 1, and
down every time it is 0. Great complexity is evident. If the curve were continued further, it would spend more time above
the axis, and no aspect of what is seen provides any evidence that the digit sequence is anything but perfectly random.
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3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664 709384
46095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091
4564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001 1330530548820
46652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857
71342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753
320838142061717766914730359825349042875546873115695628638823537875937519577818577805321712268066130019278766111959092164201989
38095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829
533116861727855688907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744
944825563797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964
73263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955
32116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321
7214772350141441973568548161361157352552133475741849468438523323907394 1433345477624 168625189835694855620992192221842725502542
56887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084 128488626945
60424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009
94657640789512694683983525957098258226205224894077267194782684826014769909026401363944374553050682034962524517493996514314298
09190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680
84598727364469584865383673622262609912460805124388439045124413654976278079771569143599770012961608944169486855584840635342207
22258284886481584560285060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125
15076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549
78189312978482168299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610
21359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910
48481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907 186494231961
5679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215030680384477345492026054 1
46659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714591028970641
40110971206280439039759515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470
60957527069572209175671167229109816909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412
671113699086585163983150197016515116851714376576183515565088490998985998238734552833163550764791853568932261854896321329330898
57064204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193259746366730
58360414281388303203824903758985243744170291327656180937734440307074692112019130203303801976211011004492932151608424448596376
69838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660397

11.0070070000111111701707070700071000100007071070001100001000710700171000700110007700717000707000101717000000011011100000711007107000
1001070071000000700710011700000710007000107007110011111001100017110700000000700000101110111110707100710007110711000100111001101100710
00100107000107001070000070000111100110001110007101000000010011011101111011117100707070007110011011001171100110100111010010000110
001101100110000001010711000010700110110111170070070111110001070000110111010011111170000700110101011011070110110710710710007170000
1007000707111001001000010110110101011107170077000700101111001111110170001101111070007007100010000101110100110100110001107111111
07101011010711000010111111111107107111001071071071110700000001107011011111101101711071710001110000110707111117011010711070700010017
100111111070010110710111070011111007100700000710007011171000700101100011111111001100700100710010700001100110010100011110110011700
100010110110011110111700001000000000011111001011100010710000701100011101111170000010110071000110110100100700000110171000017110001
07070111010011100110700110700700010711000111111107070001111110700700700711001111070111117000007110110010101011101001000111107110
070700071101011071700707700001110001100010711100110107017000700000700007101010700101011101110011110710707070070700710000071110111
00007001011010010717007110710701100111000071100001101071010011700700701010111100700770000000070011110007071707000171017100000010001
1001070000717000001000010111170000710070700710000010111100700017000707110001101107100171000111011111000111001111007111011100710171
0000011000000011107000011700000001110071011001001117000001110700010111011700000001111070001070001111101101011100010101011101111
100000110111101001100070710010110010011107111100010101111001011111101710700101070707700000010111000711000001110011001010101001001
07111100111010107001010701701070111001070007070111070010007007700007100010011000171117070000007107000700000007070101110070700017
110010110707100071010107070701700070000101107107011070011001100070171700001101000007000707000001111010007100711707070000101070700
1000071101070111101111100011100101110100710010011101700111110177000070700000700070110001101101111101117000010701000701011107101
00111000101010711107071107000001100000711000111110110110011100701110000111110000101101001107171000011110070011000111101010111111
070110101110100011007110110110000100100110011110101110001111070001100700701007170000007007071000100101071100001100111011100111017
1100071110710070001007110000710101101001011707710011010111111000100101117111111010000007101170110011000107000007000011001007110710
000111017100000001001710071001111101170070000710707007100100070700700001111100107077000117000000101110711770170071000000000711001017
110117110000100010111010701117011170700170000101011107011071700011101110000100710001000717000000101110701107100107000110111000710
000070001110001001007111107000000111070011100101101070711001100010700001111011011010110111111110011100000111111010001000010001
11007007017110000010110700070070000071071070070070000700001000000000070001107001110010001111000001001070700111100001111110011011
0701111700071000011100077001170700001000010111101101110100107707700700710100110071770000710010011100077000071010101111070071700017
0001711100000110107007070007107000001107007071071700007070100007011117011070001007107700000111110100117007070007010701101010007100
11001110100011011011101110117100001011071011000001001101111010001110111110070010711070001110111111000007010000011111101111101
10010707070011000101000011111700010110010710001110100111001101011110000000101110110011001101100107100101100100111110100000100700
001100001110100070007000710011101110700007110000110010100010107101111100111111011070001111101100001001070010111000011001110111
000107101011110107111710717700000011011110711107011101100010000701717000007007100000071100117070000000001107007000700100111110101017
101700000701101010107007100700111011010017107070700710001000710710001111110111077700000170000711011111111101101111101110070070
000701001701100000010001111010011701117101000011010111007001001107000000007101000070010071007100011011011000011111110101011010011

The first 4000 digits of 7 in bases 10 and 2. Despite the simple definition of 7 as the ratio of the circumference to the diameter of a
circle, its digit sequence is sufficiently complicated as to seem for practical purposes random.
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In no case are there any obvious regularities. Indeed, in all the
more than two hundred billion digits of n that have so far been
computed, no significant regularity of any kind has ever been found.
Despite the simplicity of its definition, the digit sequence of 7 seems
for practical purposes completely random.

But what about other numbers? Is 7 a special case, or are there
other familiar mathematical constants that have complicated digit
sequences? There are some numbers whose digit sequences effectively
have limited length. Thus, for example, the digit sequence of 3/g in base
10 is 0.375. (Strictly, the digit sequence is 0.3750000000..., but the 0’s
do not affect the value of the number, so are normally suppressed.)

It is however easy to find numbers whose digit sequences do not
terminate. Thus, for example, the exact value of 1/3 in base 10 is
0.3333333333333..., where the 3’s repeat forever. And similarly, 1/7 is
0.142857142857142857142857142857..., where now the block of digits
142857 repeats forever. The table below gives the digit sequences for
several rational numbers obtained by dividing pairs of whole numbers.
In all cases what we see is that the digit sequences of such numbers
have a simple repetitive form. And in fact, it turns out that absolutely

all rational numbers have digit sequences that eventually repeat.

1/3 = 0.333333333333333333333333333333333333333333333333333333333333333333333333333333333....

1/7 = 0.142857142857142857142857142857142857142857142857142857142857142857142857142857142...

1/9=0.111111111117171111777117717171171777117717171717771777171717171777177171717171717711717171711717771117717117177...
1/11 = 0.090909090909090909090909090909090909090909090909090909090909090909090909090909090....
1/81= 0.012345679012345679012345679012345679012345679012345679012345679012345679012345679...

1/3=0.0101010707010107010101010707070707070101010707070707070107101010107070701010101010...

1/7 = 0.001007100100710010070010010071001001001007007001001001007001001007001001001001001001 ...

1/9 = 0.0001110007110001110001110001110001117000111000111000111000711000117000111000711000...

1/11=0.00010111010001011107000101110100070111071000101110700010111071000101110700010111010...

1/81= 0.00000011001010010001011000011111100110101107111071001117000000710010100700010710000...

Digit sequences for various rational numbers, given in base 10 (above) and base 2 (below). For a
number of the form p/q, the digit sequence always repeats with a period of at most g- 7 steps.

We can get some understanding of why this is so by looking at

the details of how processes for performing division work. The pictures
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below show successive steps in a particular method for computing the

base 2 digit sequence for the rational numbers p/g.

[] 0] ]|

. w1 7

O | O |lo] (i

77/2" 1/3 ;4 - 1/5 1/6 /7 7/?-3 - 179 1/10 /11

Successive steps in the computation of various rational numbers. In each case, the column on the right shows the sequence of
base 2 digits in the number, while the box on the left shows the remainder at each of the steps in the computation.

The method is essentially standard long division, although it is
somewhat simpler in base 2 than in the usual case of base 10. The idea is
to have a number r which essentially keeps track of the remainder at each
step in the division. One starts by setting r equal to p. Then at each step,
one compares the values of 27 and q. If 2r is less than ¢, the digit
generated at that step is 0, and r is replaced by 2r. Otherwise, r is
replaced by 2 r — g. With this procedure, the value of r is always less than
g. And as a result, the digit sequence obtained always repeats at most
every g — 1 steps.

It turns out, however, that rational numbers are very unusual in
having such simple digit sequences. And indeed, if one looks for
example at square roots the story is completely different.

Perfect squares such as 4 =2x2 and 9 = 3x3 are specifically set
up to have square roots that are just whole numbers. But as the table at
the top of the next page shows, other square roots have much more
complicated digit sequences. In fact, so far as one can tell, all whole
numbers other than perfect squares have square roots whose digit
sequences appear completely random.
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V2 = 1.414213562373095048801688724209698078569671875376948073176679737990732478462107039...

V3 = 1.732050807568877293527446341505872366942805253810380628055806979451933016908800037 ...

V5 = 2.236067977499789696409173668731276235440618359611525724270897245410520925637804899 ...

V6 = 2.449489742783178098197284074705891391965947480656670128432692567250960377457315027 ...

V7 = 2.645751311064590590501615753639260425710259183082450180368334459201068823230283628 ...

V8 = 2.828427124746190097603377448419396157139343750753896146353359475981464956924214078...

V10 = 3.162277660168379331998893544432718533719555139325216826857504852792594438639238221 ...

V11 = 3.316624790355399849114932736670686683927088545589353597058682146116484642609043847 ...

V2 = 1.011010100000100111100110011001111111001110111100110010010000100010110010111110110...

V3 = 1.101110110110011110101110100001011000010011001010701001110011101100100101011107000...

V5 = 10.00111100011011101111001101110010111111101001010011111000001010111110011100111001....

V6 = 10.01110011000100011100001010000001007001000010010111001111101000000110010000110010...

V7 = 10.10100101010011111111010100111010010111110001110100110110111100011100111010100111...

V8 = 10.110701000001007111100110011001111111001110111100110010010000100010110010111110110...

V10 = 11.0070700110001011000001110101101101001011011070710010100700700000070010100010710711....

V11 = 11.01010001000011100101001001111111107011011170017070000010110100011101111001001001 ...

Digit sequences for various square roots, given at the top in base 10 and at the bottom in base 2.
Despite their simple definition, all these sequences seem for practical purposes random.

But how is such randomness produced? The picture at the top of
the facing page shows an example of a procedure for generating the base
2 digit sequence for the square root of a given number 7.

The procedure is only slightly more complicated than the one for
division discussed above. It involves two numbers r and s, which are
initially set to be n and 0, respectively. At each step it compares the
values of r and s, and if r is larger than s it replaces r and s by 4 (r —s— 1)
and 2 (s + 2) respectively; otherwise it replaces them just by 4r and 2.
And it then turns out that the base 2 digits of s correspond exactly to the
base 2 digits of V' —with one new digit being generated at each step.

As the picture shows, the results of the procedure exhibit
considerable complexity. And indeed, it seems that just like so many
other examples that we have discussed in this book, the procedure for
generating square roots is based on simple rules but nevertheless yields
behavior of great complexity.
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| 1011010100000100111100

H N N EN w1
1101110110110011110100

A procedure for generating the digit sequences of square roots. Two numbers, r and s, are involved.
To find Vn one starts by setting r=n and s=0. Then at each step one applies the rule
{r,s}>1If[r>s, {4(r-s-1), 2(s+2)}, {4r, 2s}]. The result is that the digits of s in base 2 turn out to
correspond exactly to the digits of Vi . Note that if n is not between 1 and 4, it must be multiplied
or divided by an appropriate power of 4 before starting this procedure.

It turns out that square roots are certainly not alone in having
apparently random digit sequences. As an example, the table on the next
page gives the digit sequences for some cube roots and fourth roots, as well
as for some logarithms and exponentials. And so far as one can tell, almost
all these kinds of numbers also have apparently random digit sequences.

In fact, rational numbers turn out to be the only kinds of
numbers that have repetitive digit sequences. And at least in square
roots, cube roots, and so on, it is known that no nested digit sequences
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%/_ = 1.259921049894873164767210607278228350570251464701507980081975112155299676513959483729396562436255094 1543102560 ...

% = 1.4422495703074083823216383107801095883918692534993505775464161945416875968299973398547554797056452566868350808 ...

f/_ = 1.1892071150027210667174999705604759152929720924638174130190022247194666682269171598707813445381376737160373947 ...

A\l/g = 1.3160740129524924608192189017969990551600685902058221767319226585958667951973021330507431502466019315200477423 ...

Log[2] =0.69314718055994530941723212145817656807550013436025525412068000949339362 19696947 156058633269964186875420014810...

Log[3] = 1.0986122886681096913952452369225257046474905578227494517346943336374942932186089668736157548137320887879700290 ...

e = 2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919 ...

e? = 7.3890560989306502272304274605750078131803155705518473240871278225225737960790577633843124850791217947737531612.....

‘3/3 = 1.0710000107000101000701111700110007107011100710710001070717000710007100011110111011010101107110001010110711117000100...

:f/? = 1.011700010011071107000100700710007007100011111011110110010111001101110111100111111100010110710001070110111000110...

[\1/? = 1.0011000001101111111000001070001100011011071100010707001011011110700011010101107007000711000110000010711700710000...

4\1/3 = 1.0107000071110101000111001111111001011111100010110011001011111707101101110000711007100111111000101000001101001101 ...

Log[2]=0 .10110001011100100001011111110111110700011100111101111001101010111100100111100011101100717001100000000011111100...

Log[3]= 1.00011001001111101010011110107010110700000071100007010100101110710107001000007110071100011010101010700000710100111 ...

e=10.1011011111700007010700010110007101000107011101107007101070011010701071111110711700010701100070000000700111007111...

e? = 111.01100011100110010010111000110107001101110110701101110071000011001110100011101110700010000001101011011010001....

Digit sequences for cube roots, fourth roots, logarithms and exponentials, given at the top in base 10 and the bottom in base 2. Once
again, these sequences seem for practical purposes random.

ever occur. It is straightforward to construct a nested digit sequence
using for example the substitution systems on page 83, but the point is
that such a digit sequence never corresponds to a number that can be
obtained by the mathematical operation of taking roots.

So far in this chapter we have always used digit sequences as
our way of representing numbers. But one might imagine that perhaps
this representation is somehow perverse, and that if we were just to
choose another one, then numbers generated by simple mathematical
operations would no longer seem complex.

Any representation for a number can in a sense be thought of as
specifying a procedure for constructing that number. Thus, for example, the
pictures at the top of the facing page show how the base 10 and base 2 digit
sequence representations of 7 can be used to construct the number 7.
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3.141592653 ... =3+ (1+ L (4+-L (1+ L5+ L9+ L2+ L (6+-L(5+-L(3+ ... )))))
10 10 10 10 10 10 10 10 10

11.001007000 ... =2+ 1+4 (0+L 0+ L (1+L0+L0+L(1+L0+L0+L0+ ... 00N
2 2 2 2 2 2 2 2 2

Procedures for building up 7 from its base 10 and base 2 digit sequence representations.

By replacing the addition and multiplication that appear above by
other operations one can then get other representations for numbers. A
common example are so-called continued fraction representations, in

which the operations of addition and division are used, as shown below.

3+1/(7+1/(16+1/(1+1/(292+1/(1+1/(1+1/(1+1/(2+1/(1+1/(3+1/(1+1/(14+ ... ))))))))))))

{3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,99,1,2,2,6,3,5, 1, ... }

The continued fraction representation of . In this representation the value of 7 is built up by
successive additions and divisions, rather than successive additions and multiplications.

The table on the next page gives the continued fraction
representations for various numbers. In the case of rational numbers,
the results are always of limited length. But for other numbers, they go
on forever. Square roots turn out to have purely repetitive continued
fraction representations. And the representations of e ~ 2.718 and all its
roots also show definite regularity. But for x, as well as for cube roots,
fourth roots, and so on, the continued fraction representations one gets
seem essentially random.

What about other representations of numbers? At some level, one

can always use symbolic expressions like V2 +el?

to represent
numbers. And almost by definition, numbers that can be obtained by
simple mathematical operations will correspond to simple such
expressions. But the problem is that there is no telling how difficult it
may be to compute the actual value of a number from the symbolic
expression that is used to represent it.

And in thinking about representations of numbers, it seems
appropriate to restrict oneself to cases where the effort required to find

the value of a number from its representation is essentially the same for
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1/7=1(0,7]

7/11={0,1,1,1,3]

V2 =(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, ...}

V3 ={1,1,21,21,21,21,21,2,1,2,1,21,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1, ...}

VB =(2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 4,4, 4,4, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 4,4 4, ..}

V7 =20, 1,1,41,1,1,41,1,1,4 1,1, 1,4 1,1, 1,4 1,1, 1,4 1,1,1,41,1,1,4,1,1,1,4,1,1,1,4, 1,1, 1,4 1,1,1,41,1,1,4.1,1,1, ..}

(1+\E)/2={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1, 1, ...}

?/7 ={1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1,3,4,1,1,2,14,3,12,1,15,3,1,4,5634,1,1,5,1,1,121,1,2,2,4,10,3, 2,2, ...}

33 ={1,2,31,4,1,5,1,1,6,2,5,83,3,4,2,6,4,4,1,3,2,3,4,1,4,9,1,8,43 1,3 2,6,1,6,1,3,1,1,1,1,12,3,1,3,1,1,4,1,6,1,5, ...}

f/— ={1,5,31,1,40,5,1,1,25,2,3,1,6,2,1,1,2,1,2,1,1,1,2,2,1,7,2,7,1,1,1,2,1,1,32,4,1,6,2,1,1,1,15,1,5,1,4,1,1,1,3,1,3, ...}

/JJ* ={1,3,6,9,1,1,2,1,2,1,2,5,1,12,5,1,4,1,13,1,6,1,22,1,8,21,3,142,1,1,2,1,2,2,7,1,2,1,1,1,5,3,1,1,2,1,1,3,1,1,1, 1, ...}

Log[2]={0,1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,1,1,3,2,3,1,13,7,4,1,1,1,7,2,4,1,1,2,5,14,1,10,1,4,2, 18,3, 1,4, 1,6, ...}

Log[3]=1{1,10,7,9,2,2,1,3,1,32,2,17,1,15,1,1,7,3,1,35,1,1,1,2,5,3,2,1,4,2,1,3,1,5,3,13,1,1,1,6,2,3,1,1562,1,2,3,1,7,9,2, ...}

e=(2121141,161181,1101,1,12,1,1,14,1,1,16,1,1,18,1,1,20,1,1,22,1,1,24,1,1,26,1,1,28,1,1,30,1,1,32,1, ...}

Ve ={1,1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,25,1,1,29,1,1,33,1,1,37,1,1,41,1,1,45,1,1,49,1,1,53,1,1,57,1,1,61,1,1, ...}

% ={1,2,1,1,8,1,1,14,1,1,20,1,1,26,1,1,32,1,1,38,1,1,44,1,1,50, 1, 1,56, 1,1,62,1,1,68, 1,1, 74,1,1,80,1, 1,86, 1,1,92, 1,1, ...}

e =(7,2,1,1,3185,1,1,6,30,8,1,1,9,42,11,1,1,12,54,14,1,1, 15,66, 17,1, 1,18, 78,20, 1,1, 21,90, 23,1, 1, 24, 102,26, 1, 1,27, ...}

e3=(20,11,1,2,4,3,1,5,1,2,16,1,1,16,2,13,14,4,6,2,1,1,2,2,2,3,5,1,3,1,1,68,7,5,1,4,2,1,1,1,1,1,1,7,3,1,6,1,2,5,4,7, ...}

w={37,151292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,99,1,2,2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2, ...}

72 ={9,1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,1,2,1,1,3,15,1,1,2,2,1,3,2,7,1,9,18,30,2,145,1,1,17,9,1,1,1,1, 7,12, 1, ...}

Sinh[1] ={1,5,1,2,2,2,1,2,7,5,1,1,1,2,2,19,1,2,1,7,1,1,9,1,3,1,1,2,1,1,1,1,1,3,1,2,4,5,3,5,1,3,1,1,1,2,7,1,9,1,1,2, 1,21, 1, ...}

Tanh[1] ={0,1,3,5,7,9,11,13,15,17,19,21,23,25,27, 29, 31, 33, 35, 37, 39, 41,43, 45, 47, 49, 51, 53, 65, 57, 59, 61, 63, 65, 67, 69, 71, 73, ...}

Continued fraction representations for several numbers. Square roots yield repetitive sequences in this representation, but cube roots
and higher roots yield seemingly random sequences.

all numbers. If one does this, then the typical experience is that in any
particular representation, some class of numbers will have simple
forms. But other numbers, even though they may be the result of simple
mathematical operations, tend to have seemingly random forms.

And from this it seems appropriate to conclude that numbers
generated by simple mathematical operations are often in some
intrinsic sense complex, independent of the particular representation

that one uses to look at them.
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Mathematical Functions

The last section showed that individual numbers obtained by applying
various simple mathematical functions can have features that are quite
complex. But what about the functions themselves?

The pictures below show curves obtained by plotting standard
mathematical functions. All of these curves have fairly simple,
essentially repetitive forms. And indeed it turns out that almost all the
standard mathematical functions that are defined, for example, in
Mathematica, yield similarly simple curves.

Sin[x] Tan[x] Sec[x]

0.5

[S)

AAAAY U UL
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-10 0 10 20 30 -30 -20 -10 0 10 20 30

0 5

Plots of some standard mathematical functions. The top row shows three trigonometric functions. The bottom row shows
three so-called special functions that are commonly encountered in mathematical physics and other areas of traditional
science. In all cases the curves shown have fairly simple repetitive forms.

But if one looks at combinations of these standard functions, it is
fairly easy to get more complicated results. The pictures on the next
page show what happens, for example, if one adds together various sine
functions. In the first picture, the curve one gets has a fairly simple
repetitive structure. In the second picture, the curve is more
complicated, but still has an overall repetitive structure. But in the
third and fourth pictures, there is no such repetitive structure, and
indeed the curves look in many respects random.
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Sin[x] + Sin[3/2 x]
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Sin[x] + Sin[10/7 x]
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Sin[x] +Sin[N2 x]+Sin[\3 x]
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Curves obtained by adding together various sine functions. In the first two cases, the curves are ultimately repetitive; in the second two
cases they are not. If viewed as waveforms for sounds, then these curves correspond to chords. The first curve yields a perfect fifth,
while the third curve yields a diminished fifth (or tritone) in an equal temperament scale.

In the third picture, however, the points where the curve crosses
the axis come in two regularly spaced families. And as the pictures on
the facing page indicate, for any curve like Sin[x] + Sin[ax] the relative
arrangements of these crossing points turn out to be related to the
output of a generalized substitution system in which the rule at each
step is obtained from a term in the continued fraction representation of
(- 1)/(a+1).

When « is a square root, then as discussed in the previous
section, the continued fraction representation is purely repetitive,

146



SYSTEMS BASED ON NUMBERS CHAPTER 4

1 NNNNN

Cos[x]-Cosl(1+V2 )x]

Cos[x]-Cos[(2+V5 )x]

Cos[x]-Cos[(2+V5 )x]

NA <N W

Cos[x]-Cos[(1+\e )x]

Curves obtained by adding or subtracting exactly two sine or cosine functions turn out to have a pattern
of axis crossings that can be reproduced by a generalized substitution system. In general there is an axis
crossing within an interval when the corresponding element in the generalized substitution system is
black, and there is not when the element is white. In the case of Cos[x]-Cos[a x] each step in the
generalized substitution system has a rule determined as shown on the left from a term in the continued
fraction representation of (ov-1)/(cc + 7). In the first two examples shown « is a quadratic irrational, so
that the continued fraction is repetitive, and the pattern obtained is purely nested. (The second example
is analogous to the Fibonacci substitution system on page 83.) In the last two examples, however, there
is no such regularity. Note that successive terms in each continued fraction are shown alongside
successive steps in the substitution system going up the page.
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making the generated pattern nested. But when a is not a square root
the pattern can be more complicated. And if more than two sine
functions are involved there no longer seems to be any particular
connection to generalized substitution systems or continued fractions.

Among all the various mathematical functions defined, say, in
Mathematica it turns out that there are also a few—not traditionally
common in natural science—which yield complex curves but which do
not appear to have any explicit dependence on representations of
individual numbers. Many of these are related to the so-called Riemann
zeta function, a version of which is shown in the picture below.

The basic definition of this function is fairly simple. But in the
end the function turns out to be related to the distribution of primes—
and the curve it generates is quite complicated. Indeed, despite
immense mathematical effort for over a century, it has so far been
impossible even to establish for example the so-called Riemann
Hypothesis, which in effect just states that all the peaks in the curve lie
above the axis, and all the valleys below.

~ gy Joly \/Av V/\”VAV /\V“V“\/A A\/Avv/\“ W \]“v“v/\/ A\/V“v/\v it V[\VV I 1 /\
| UV A\/“ U/\V,VVVAVAUA VI\VAVAV[\VAVAVA ﬁnvnn Vﬂv VAUAVAV VAAUf\U " j\/\vf\v U/\AVAV(\UA n\/ﬂv!\vl\ va\vﬂj\vv{\vvf\uﬂvwf\vnvl\{\vf\ VnUn " AVAVI\VI\UV UP

A curve associated with the so-called Riemann zeta function. The zeta function Zeta[s] is defined as Sum[1/k®, {k, «}]. The
curve shown here is the so-called Riemann-Siegel Z function, which is essentially Zeta[1/2 +it]. The celebrated Riemann
Hypothesis in effect states that all peaks after the first one in this curve must lie above the axis.
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Iterated Maps and the Chaos Phenomenon

The basic idea of an iterated map is to take a number between 0 and 1,
and then in a sequence of steps to update this number according to a
fixed rule or “map”. Many of the maps I will consider can be expressed
in terms of standard mathematical functions, but in general all that is
needed is that the map take any possible number between 0 and 1 and
yield some definite number that is also between 0 and 1.

The pictures on the next two pages show examples of behavior
obtained with four different possible choices of maps.

Cases (a) and (b) on the first page show much the same kind of
complexity that we have seen in many other systems in this chapter—
in both digit sequences and sizes of numbers. Case (c) shows complexity
in digit sequences, but the sizes of the numbers it generates rapidly tend
to 0. Case (d), however, seems essentially trivial—and shows no
complexity in either digit sequences or sizes of numbers.

On the first of the next two pages all the examples start with the
number 1/2—which has a simple digit sequence. But the examples on
the second of the next two pages instead start with the number 7/4—
which has a seemingly random digit sequence.

Cases (a), (b) and (c) look very similar on both pages, particularly
in terms of sizes of numbers. But case (d) looks quite different. For on
the first page it just yields 0’s. But on the second page, it yields numbers
whose sizes continually vary in a seemingly random way.

If one looks at digit sequences, it is rather clear why this happens.
For as the picture illustrates, the so-called shift map used in case (d)
simply serves to shift all digits one position to the left at each step. And
this means that over the course of the evolution of the system, digits
further to the right in the original number will progressively end up all
the way to the left—so that insofar as these digits show randomness,
this will lead to randomness in the sizes of the numbers generated.

It is important to realize, however, that in no real sense is any
randomness actually being generated by the evolution of this system.
Instead, it is just that randomness that was inserted in the digit

sequence of the original number shows up in the results one gets.
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(a) (b) (c) (d)
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(c) (d)
1 7 1 7
3/4 3/4
(a) 1/2 (b) (c) (d) 1/2
0 0 0 0
0 2/3 1 0 1/2 1 0 1 0 1/2 1
X - FractionalPart[3/2 x] x-If[x<1/2,3/2x,3/2(1-x)] X - FractionalPart[3/4 x] X — FractionalPart[2 x]

Examples of iterated maps starting from simple initial conditions. At each step there is a number x between 0 and 1 that is updated
by applying a fixed mapping. The four mappings considered here are given above both as formulas and in terms of plots. The pictures
at the top of the page show the base 2 digit sequences of successive numbers obtained by iterating this mapping, while the pictures
in the middle of the page plot the sizes of these numbers. In all cases, the initial conditions consist of the number 1/2—which has a
very simple digit sequence. Yet despite this simplicity, cases (a) and (b) show considerable complexity in both the digit sequences
and the sizes of the numbers produced (compare page 122). In case (c), the digit sequences are complicated but the sizes of the
numbers tend rapidly to zero. And finally, in case (d), neither the digit sequences nor the sizes of numbers are anything but trivial.
Note that in the pictures above each horizontal row of digits corresponds to a number, and that digits further to the left contribute
progressively more to the size of this number.
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X — FractionalPart[3/2 x]

x->If[x<1/2,3/2x,3/2(1-x)] x — FractionalPart[3/4 x] X — FractionalPart[2 x]

The same iterated maps as on the facing page, but now started from the initial condition 7r/4—a number with a seemingly random
digit sequence. After fairly few steps, cases (a) and (b) yield behavior that is almost indistinguishable from what was seen with simple
initial conditions on the facing page. And in case (c), the same exponential decay in the sizes of numbers occurs as before. But in case
(d), the behavior is much more complicated. Indeed, if one just looked at the sizes of numbers produced, then one sees the same kind
of complexity as in cases (a) and (b). But looking at digit sequences one realizes that this complexity is actually just a direct
transcription of complexity introduced by giving an initial condition with a seemingly random digit sequence. Case (d) is the so-called
shift map—a classic example of a system that exhibits the sensitive dependence on initial conditions often known as chaos.
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This is very different from what happens in cases (a) and (b). For
in these cases complex and seemingly random results are obtained even
on the first of the previous two pages—when the original number has a
very simple digit sequence. And the point is that these maps actually do
intrinsically generate complexity and randomness; they do not just
transcribe it when it is inserted in their initial conditions.

In the context of the approach I have developed in this book this
distinction is easy to understand. But with the traditional mathematical
approach, things can get quite confused. The main issue—already
mentioned at the beginning of this chapter—is that in this approach the
only attribute of numbers that is usually considered significant is their
size. And this means that any issue based on discussing explicit digit
sequences for numbers—and whether for example they are simple or
complicated—tends to seem at best bizarre.

Indeed, thinking about numbers purely in terms of size, one
might imagine that as soon as any two numbers are sufficiently close in
size they would inevitably lead to results that are somehow also close.
And in fact this is for example the basis for much of the formalism of
calculus in traditional mathematics.

But the essence of the so-called chaos phenomenon is that there
are some systems where arbitrarily small changes in the size of a
number can end up having large effects on the results that are produced.
And the shift map shown as case (d) on the previous two pages turns out
to be a classic example of this.

The pictures at the top of the facing page show what happens if
one uses as the initial conditions for this system two numbers whose
sizes differ by just one part in a billion billion. And looking at the plots
of sizes of numbers produced, one sees that for quite a while these two
different initial conditions lead to results that are indistinguishably
close. But at some point they diverge and soon become quite different.

And at least if one looks only at the sizes of numbers, this seems
rather mysterious. But as soon as one looks at digit sequences, it
immediately becomes much clearer. For as the pictures at the top of the
facing page show, the fact that the numbers which are used as initial
conditions differ only by a very small amount in size just means that
their first several digits are the same. And for a while these digits are
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n %

initial condition 0.7856398163397448310

initial condition 0.785398163397448310

initial condition 0.785398163397448311

difference

initial condition 0.785398163397448311 difference

The effect of making a small change in the initial conditions for the
shift map—shown as case (d) on pages 150 and 151. The first
picture shows results for the same initial condition as on page
151. The second picture shows what happens if one changes the
size of the number in this initial condition by just one part in a
billion billion. The plots to the left indicate that for a while the sizes
of numbers obtained by the evolution of the system in these two
cases are indistinguishable. But suddenly the results diverge and
become completely different. Looking at the digit sequences
above shows why this happens. The point is that a small change in
the size of the number in the initial conditions corresponds to a
change in digits far to the right. But the evolution of the system
progressively shifts digits to the left, so that the digits which differ
eventually become important. The much-investigated chaos
phenomenon consists essentially of this effect.

what is important. But since the evolution of the system continually
shifts digits to the left, it is inevitable that the differences that exist in
later digits will eventually become important.

The fact that small changes in initial conditions can lead to large
changes in results is a somewhat interesting phenomenon. But as I will
discuss at length in Chapter 7 one must realize that on its own this
cannot explain why randomness—or complexity—should occur in any
particular case. And indeed, for the shift map what we have seen is that
randomness will occur only when the initial conditions that are given
happen to be a number whose digit sequence is random.

But in the past what has often been confusing is that traditional
mathematics implicitly tends to assume that initial conditions of this

kind are in some sense inevitable. For if one thinks about numbers
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purely in terms of size, one should make no distinction between
numbers that are sufficiently close in size. And this implies that in
choosing initial conditions for a system like the shift map, one should
therefore make no distinction between the exact number 1/2 and
numbers that are sufficiently close in size to 1/2.

But it turns out that if one picks a number at random subject only
to the constraint that its size be in a certain range, then it is
overwhelmingly likely that the number one gets will have a digit
sequence that is essentially random. And if one then uses this number
as the initial condition for a shift map, the results will also be
correspondingly random—just like those on the previous page.

In the past this fact has sometimes been taken to indicate that
the shift map somehow fundamentally produces randomness. But as I
have discussed above, the only randomness that can actually come out
of such a system is randomness that was explicitly put in through the
details of its initial conditions. And this means that any claim that the
system produces randomness must really be a claim about the details of
what initial conditions are typically given for it.

I suppose in principle it could be that nature would effectively follow
the same idealization as in traditional mathematics, and would end up
picking numbers purely according to their size. And if this were so, then it
would mean that the initial conditions for systems like the shift map
would naturally have digit sequences that are almost always random.

But this line of reasoning can ultimately never be too useful. For
what it says is that the randomness we see somehow comes from
randomness that is already present—but it does not explain where that
randomness comes from. And indeed—as I will discuss in Chapter 7—if
one looks only at systems like the shift map then it is not clear any new
randomness can ever actually be generated.

But a crucial discovery in this book is that systems like (a) and (b)
on pages 150 and 151 can show behavior that seems in many respects
random even when their initial conditions show no sign of randomness
and are in fact extremely simple.

Yet the fact that systems like (a) and (b) can intrinsically generate

randomness even from simple initial conditions does not mean that they

154



SYSTEMS BASED ON NUMBERS ‘ CHAPTER 4

do not also show sensitive dependence on initial conditions. And indeed
the pictures below illustrate that even in such cases changes in digit

sequences are progressively amplified—just like in the shift map case (d).

s

Rl BT
T e
hri'p' H

7.

(b) (d)

Differences in digit sequences produced by a small change in initial conditions for the four iterated maps discussed in this
section. Cases (a), (b) and (d) exhibit sensitive dependence on initial conditions, in the sense that a change in insignificant digits
far to the right eventually grows to affect all digits. Case (c) does not show such sensitivity to initial conditions, but instead
always evolves to 0, independent of its initial conditions.

But the crucial point that I will discuss more in Chapter 7 is that
the presence of sensitive dependence on initial conditions in systems
like (a) and (b) in no way implies that it is what is responsible for the
randomness and complexity we see in these systems. And indeed, what
looking at the shift map in terms of digit sequences shows us is that
this phenomenon on its own can make no contribution at all to what

we can reasonably consider the ultimate production of randomness.

Continuous Cellular Automata

Despite all their differences, the various kinds of programs discussed in
the previous chapter have one thing in common: they are all based on
elements that can take on only a discrete set of possible forms, typically
just colors black and white. And in this chapter, we have introduced a
similar kind of discreteness into our study of systems based on numbers
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by considering digit sequences in which each digit can again have only a
discrete set of possible values, typically just 0 and 1.

So now a question that arises is whether all the complexity we
have seen in the past three chapters somehow depends on the
discreteness of the elements in the systems we have looked at.

And to address this question, what I will do in this section is to
consider a generalization of cellular automata in which each cell is not
just black or white, but instead can have any of a continuous range of
possible levels of gray. One can update the gray level of each cell by
using rules that are in a sense a cross between the totalistic cellular
automaton rules that we discussed at the beginning of the last chapter
and the iterated maps that we just discussed in the previous section.

The idea is to look at the average gray level of a cell and its
immediate neighbors, and then to get the gray level for that cell at the
next step by applying a fixed mapping to the result. The picture below
shows a very simple case in which the new gray level of each cell is
exactly the average of the one for that cell and its immediate neighbors.
Starting from a single black cell, what happens in this case is that the

gray essentially just diffuses away, leaving in the end a uniform pattern.

l:- 0| o | o | o [033|033|033| 0 | 0 | 0 | 0

A continuous cellular automaton in 0 | 0o | o |om|022|0383 0222|0111 0 | 0 | 0
which each cell can have any level of
gray between white (0) and black (1).
The rule shown here takes the new 0 | 0012|0049 | 0123 | 0.198 | 0.235 | 0.198 | 0.123 | 0.049 | 0.012 | 0
gray level of each cell to be the average
of its own gray level and those of its
immediate neighbors.

0 0 | 0037|0711 |0222 | 0259 | 0222 | 0.111 | 0.037 | 0O 0

0.004'| 0.021 | 0.062 | 0.123 | 0.185 | 0.21 | 0.165 | 0.123 | 0.062 | 0.021 | 0.004

The picture on the facing page shows what happens with a
slightly more complicated rule in which the average gray level is
multiplied by 3/2, and then only the fractional part is kept if the result
of this is greater than 1.
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FractionalPart[3/2 x]
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A continuous cellular automaton with a slightly more complicated rule.
The rule takes the new gray level of each cell to be the fractional part of
the average gray level of the cell and its neighbors multiplied by 3/2. The
picture shows that starting from a single black cell, this rule yields
behavior of considerable complexity. Note that the operation performed
on individual average gray levels is exactly iterated map (a) from page 150.

And what we see is that despite the presence of continuous gray

levels, the behavior that is produced exhibits the same kind of
complexity that we have seen in many ordinary cellular automata and

other systems with discrete underlying elements.
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In fact, it turns out that in continuous cellular automata it takes
only extremely simple rules to generate behavior of considerable
complexity. So as an example the picture below shows a rule that
determines the new gray level for a cell by just adding the constant 1/4
to the average gray level for the cell and its immediate neighbors, and

then taking the fractional part of the result.

0611 0722 0833 0722 0611

0.787 0861 ¢ (Al 0972 0861 0.767 75 75
URCZAR T 0.123 | 0.049 | 0.012 | 0
088 088 0312 | 0271 | 0.254

0254 | 0271 | 0312

A continuous cellular automaton whose rule adds the constant 1/4 to the
average gray level for a cell and its immediate neighbors, and takes the
fractional part of the result. The background simply repeats every 4 steps,
FractionalPart[x+1/4] but the main pattern has a complex and in many respects random form.

The facing page and the one after show what happens when one
chooses different values for the constant that is added. A remarkable
diversity of behavior is seen. Sometimes the behavior is purely
repetitive, but often it has features that seem effectively random.

And in fact, as the picture in the middle of page 160 shows, it is
even possible to find cases that exhibit localized structures very much

like those occasionally seen in ordinary cellular automata.

Continuous cellular automata with the same kind of rules as in the picture
above, but with a variety of different constants being added. Note that it is not
so much the size of the constant as properties like its digit sequence that
seem to determine the overall form of behavior produced in each case. »
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0.3299 (differences)
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0.475 0.495 0.9

More steps in the evolution of continuous cellular automata with the same kind of rules as on the previous page. In order to remove
the uniform stripes, the picture in the middle shows the difference between the gray level of each cell and its immediate neighbor.
Note the presence of discrete localized structures even though the underlying rules for the system involve continuous gray levels.
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Partial Differential Equations

By introducing continuous cellular automata with a continuous range
of gray levels, we have successfully removed some of the discreteness
that exists in ordinary cellular automata. But there is nevertheless
much discreteness that remains: for a continuous cellular automaton is
still made up of discrete cells that are updated in discrete time steps.

So can one in fact construct systems in which there is absolutely
no such discreteness? The answer, it turns out, is that at least in
principle one can, although to do so requires a somewhat higher level of
mathematical abstraction than has so far been necessary in this book.

The basic idea is to imagine that a quantity such as gray level can
be set up to vary continuously in space and time. And what this means
is that instead of just having gray levels in discrete cells at discrete time
steps, one supposes that there exists a definite gray level at absolutely
every point in space and every moment in time—as if one took the limit
of an infinite collection of cells and time steps, with each cell being an
infinitesimal size, and each time step lasting an infinitesimal time.

But how does one give rules for the evolution of such a system?
Having no explicit time steps to work with, one must instead just
specify the rate at which the gray level changes with time at every point
in space. And typically one gives this rate as a simple formula that
depends on the gray level at each point in space, and on the rate at
which that gray level changes with position.

Such rules are known in mathematics as partial differential
equations, and in fact they have been widely studied for about two
hundred years. Indeed, it turns out that almost all the traditional
mathematical models that have been used in physics and other areas of
science are ultimately based on partial differential equations. Thus, for
example, Maxwell’s equations for electromagnetism, Einstein’s
equations for gravity, Schrodinger’s equation for quantum mechanics
and the Hodgkin-Huxley equation for the electrochemistry of nerve
cells are all examples of partial differential equations.

It is in a sense surprising that systems which involve such a high

level of mathematical abstraction should have become so widely used
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in practice. For as we shall see later in this book, it is certainly not that
nature fundamentally follows these abstractions.

And T suspect that in fact the current predominance of partial
differential equations is in many respects a historical accident—and
that had computer technology been developed earlier in the history of
mathematics, the situation would probably now be very different.

But particularly before computers, the great attraction of partial
differential equations was that at least in simple cases explicit
mathematical formulas could be found for their behavior. And this
meant that it was possible to work out, for example, the gray level at a
particular point in space and time just by evaluating a single
mathematical formula, without having in a sense to follow the
complete evolution of the partial differential equation.

The pictures on the facing page show three common partial
differential equations that have been studied over the years.

The first picture shows the diffusion equation, which can be
viewed as a limiting case of the continuous cellular automaton on page
156. Its behavior is always very simple: any initial gray progressively
diffuses away, so that in the end only uniform white is left.

The second picture shows the wave equation. And with this
equation, the initial lump of gray shown just breaks into two identical
pieces which propagate to the left and right without change.

The third picture shows the sine-Gordon equation. This leads to
slightly more complicated behavior than the other equations—though
the pattern it generates still has a simple repetitive form.

Considering the amount of mathematical work that has been
done on partial differential equations, one might have thought that a
vast range of different equations would by now have been studied. But
in fact almost all the work—at least in one dimension—has
concentrated on just the three specific equations on the facing page,
together with a few others that are essentially equivalent to them.

And as we have seen, these equations yield only simple behavior.

So is it in fact possible to get more complicated behavior in
partial differential equations? The results in this book on other kinds of
systems strongly suggest that it should be. But traditional
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diffusion equation: 8, ult, x] = 1/4 8, ult, x]

wave equation: 8, ult, x] = 8, ult, x]

sine-Gordon soliton equation: 8,, ult, x] = 8,, ult, x] + Sin[u[t, x]]

Three partial differential equations that have historically been studied extensively. Just like in other pictures in this book, position goes
across the page, and time down the page. In each equation v is the gray level at a particular point, 3, u is the rate of change (derivative)
of the gray level with time, and 8, u is the rate of change of that rate of change (second derivative). Similarly, 8, u is the rate of change
with position in space, and 3, u is the rate of change of that rate of change. On this page and the ones that follow the initial
conditions used are u =™, d,u=0.
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mathematical methods give very little guidance about how to find such
behavior. Indeed, it seems that the best approach is essentially just to
search through many different partial differential equations, looking for
ones that turn out to show complex behavior.

But an immediate difficulty is that there is no obvious way to
sample possible partial differential equations. In discrete systems such
as cellular automata there are always a discrete set of possible rules. But
in partial differential equations any mathematical formula can appear.

Nevertheless, by representing formulas as symbolic expressions
with discrete sets of possible components, one can devise at least some
schemes for sampling partial differential equations.

But even given a particular partial differential equation, there is
no guarantee that the equation will yield self-consistent results. Indeed,
for a very large fraction of randomly chosen partial differential equations
what one finds is that after just a small amount of time, the gray level
one gets either becomes infinitely large or starts to vary infinitely
quickly in space or time. And whenever such phenomena occur, the
original equation can no longer be used to determine future behavior.

But despite these difficulties I was eventually able to find the
partial differential equations shown on the next two pages.

The mathematical statement of these equations is fairly simple.
But as the pictures show, their behavior is highly complex.

Indeed, strangely enough, even though the underlying equations
are continuous, the patterns they produce seem to involve patches that
have a somewhat discrete structure.

But the main point that the pictures on the next two pages make
is that the kind of complex behavior that we have seen in this book is in
no way restricted to systems that are based on discrete elements. It is
certainly much easier to find and to study such behavior in these
discrete systems, but from what we have learned in this section, we
now know that the same kind of behavior can also occur in completely

continuous systems such as partial differential equations.
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By ult, x] =38, ult, x] +(1-ult, x]?)(1+ult, x])

B, ult, x] =d,, ult, x]+(1-ult, xJ?)(1+4ult, x])
Examples of partial differential equations | have found that have more complicated behavior. The background in each case purely is

repetitive, but the main part of the pattern is complex, and reminiscent of what is produced by continuous cellular automata and many
other kinds of systems discussed in this book.
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B, ult, x] =08 ult, x]+(1-ult, xJ?)(1+4ult, x])
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Continuous Versus Discrete Systems

One of the most obvious differences between my approach to science
based on simple programs and the traditional approach based on
mathematical equations is that programs tend to involve discrete
elements while equations tend to involve continuous quantities.

But how significant is this difference in the end?

One might have thought that perhaps the basic phenomenon of
complexity that I have identified could only occur in discrete systems. But
from the results of the last few sections, we know that this is not the case.

What is true, however, is that the phenomenon was immensely
easier to discover in discrete systems than it would have been in
continuous ones. Probably complexity is not in any fundamental sense
rarer in continuous systems than in discrete ones. But the point is that
discrete systems can typically be investigated in a much more direct
way than continuous ones.

Indeed, given the rules for a discrete system, it is usually a rather
straightforward matter to do a computer experiment to find out how
the system will behave. But given an equation for a continuous system,
it often requires considerable analysis to work out even approximately
how the system will behave. And in fact, in the end one typically has
rather little idea which aspects of what one sees are actually genuine
features of the system, and which are just artifacts of the particular
methods and approximations that one is using to study it.

With all the work that was done on continuous systems in the
history of traditional science and mathematics, there were undoubtedly
many cases in which effects related to the phenomenon of complexity
were seen. But because the basic phenomenon of complexity was not
known and was not expected, such effects were probably always
dismissed as somehow not being genuine features of the systems being

studied. Yet when I came to investigate discrete systems there was no

4 Solutions to the same equations as on the previous page over a longer period of time. Note
the appearance of discrete structures. Particularly in the last picture some details are sensitive
to the numerical approximation scheme used in computing the solution to the equation.
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possibility of dismissing what I saw in such a way. And as a result I was
in a sense forced into recognizing the basic phenomenon of complexity.

But now, armed with the knowledge that this phenomenon
exists, it is possible to go back and look again at continuous systems.

And although there are significant technical difficulties, one finds
as the last few sections have shown that the phenomenon of complexity
can occur in continuous systems just as it does in discrete ones.

It remains much easier to be sure of what is going on in a discrete
system than in a continuous one. But I suspect that essentially all of the
various phenomena that we have observed in discrete systems in the
past several chapters can in fact also be found even in continuous

systems with fairly simple rules.
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Introduction

The physical world in which we live involves three dimensions of
space. Yet so far in this book all the systems we have discussed have
effectively been limited to just one dimension.

The purpose of this chapter, therefore, is to see how much of a
difference it makes to allow more than one dimension.

At least in simple cases, the basic idea—as illustrated in the
pictures below—is to consider systems whose elements do not just lie
along a one-dimensional line, but instead are arranged for example on a

two-dimensional grid.

one dimension

two dimensions three dimensions

Examples of simple arrangements of elements in one, two and three dimensions. In two
dimensions, what is shown is a square grid; triangular and hexagonal grids are also possible. In three
dimensions, what is shown is a cubic lattice; various other lattices, analogous to those for regular
crystals, are also possible—as are arrangements that are not repetitive.
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Traditional science tends to suggest that allowing more than one
dimension will have very important consequences. Indeed, it turns out
that many of the phenomena that have been most studied in traditional
science simply do not occur in just one dimension.

Phenomena that involve geometrical shapes, for example, usually
require at least two dimensions, while phenomena that rely on the
existence of knotted structures require three dimensions. But what about
the phenomenon of complexity? How much does it depend on dimension?

It could be that in going beyond one dimension the character of
the behavior that we would see would immediately change. And indeed
in the course of this chapter, we will come across many examples of
specific effects that depend on having more than one dimension.

But what we will discover in the end is that at an overall level the
behavior we see is not fundamentally much different in two or more
dimensions than in one dimension. Indeed, despite what we might
expect from traditional science, adding more dimensions does not
ultimately seem to have much effect on the occurrence of behavior of

any significant complexity.

Cellular Automata

The cellular automata that we have discussed so far in this book are all
purely one-dimensional, so that at each step, they involve only a single
line of cells. But one can also consider two-dimensional cellular
automata that involve a whole grid of cells, with the color of each cell
being updated according to a rule that depends on its neighbors in all

four directions on the grid, as in the picture below.

The form of the rule for a typical two-dimensional cellular automaton.
In the cases discussed in this section, each cell is either black or

white. Usually | consider so-called totalistic rules in which the new + - .
color of the center cell depends only on the average of the previous

colors of its four neighbors, as well as on its own previous color.
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The pictures below show what happens with an especially simple
rule in which a particular cell is taken to become black if any of its four

neighbors were black on the previous step.

step 1 step 2 step 3

Successive steps in the evolution of a two-dimensional cellular automaton whose rule specifies that a particular cell should become
black if any of its neighbors were black on the previous step. (In the numbering scheme described on page 173 this rule is code 1022.)

Starting from a single black cell, this rule just yields a uniformly
expanding diamond-shaped region of black cells. But by changing the
rule slightly, one can obtain more complicated patterns of growth. The
pictures below show what happens, for example, with a rule in which
each cell becomes black if just one or all four of its neighbors were black

on the previous step, but otherwise stays the same color as it was before.

!
t
t

step 10 step 20 step 30

Steps in the evolution of a two-dimensional cellular automaton whose rule specifies that a particular cell should become black if exactly
one or all four of its neighbors were black on the previous step, but should otherwise stay the same color. Starting with a single black
cell, this rule yields an intricate, if very regular, pattern of growth. (In the numbering scheme on page 173, the rule is code 942.)
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The patterns produced in this case no longer have a simple
geometrical form, but instead often exhibit an intricate structure
somewhat reminiscent of a snowflake. Yet despite this intricacy, the
patterns still show great regularity. And indeed, if one takes the
patterns from successive steps and stacks them on top of each other to

form a three-dimensional object, as in the picture below, then this

object has a very regular nested structure.
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A three-dimensional object
formed by stacking the two-dimensional
patterns from the bottom of the previous page. Such
pictures are the analogs for two-dimensional cellular automata of the
two-dimensional pictures that | often generate for one-dimensional cellular automata.

But what about other rules? The facing page and the one that
follows show patterns produced by two-dimensional cellular automata
with a sequence of different rules. Within each pattern there is often
considerable complexity. But this complexity turns out to be very

similar to the complexity we have already seen in one-dimensional
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code 485 code 486 code 487 code 488 code 489 code 490 code 491
code 492 code 493 code 494 code 495 code 496 code 497 code 498

Patterns generated by a sequence of two-dimensional cellular automaton rules. The patterns are produced by starting from a
single black square and then running for 22 steps. In each case the base 2 digit sequence for the code number specifies the
rule as follows. The last digit specifies what color the center cell should be if all its neighbors were white on the previous step,
and it too was white. The second-to-last digit specifies what happens if all the neighbors are white, but the center cell itself is
black. And each earlier digit then specifies what should happen if progressively more neighbors are black. (Compare page 60.)
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code 453

code 457

code 461

code 462

code 465

code 468

code 470

code 475

code 478

code 481

code 483

code 489

code 491

code 493

Patterns generated by two-dimensional cellular automata from the previous page, but now after twice as many steps.
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code 450 code 451 code 452

code 454 code 455 code 456 code 457

code 458 code 460 code 461

|

code 462 code 463 code 464 code 465

}
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code 466 code 467 code 468 code 469

code 470 code 471 code 472 code 473

code 474 code 475 code 476 code 477

code 478 code 479 code 480 code 481

Evolution of one-dimensional slices through some of the two-dimensional cellular automata from the previous two pages. Each
picture shows the colors of cells that lie on the one-dimensional line that goes through the middle of each two-dimensional pattern.
The results are strikingly similar to ones we saw in previous chapters in purely one-dimensional cellular automata.
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cellular automata. And indeed the previous page shows that if one
looks at the evolution of a one-dimensional slice through each
two-dimensional pattern the results one gets are strikingly similar to
what we have seen in ordinary one-dimensional cellular automata.

But looking at such slices cannot reveal much about the overall
shapes of the two-dimensional patterns. And in fact it turns out that for
all the two-dimensional cellular automata shown on the last few pages,
these shapes are always very regular.

But it is nevertheless possible to find two-dimensional cellular
automata that yield less regular shapes. And as a first example, the
picture on the facing page shows a rule that produces a pattern whose
surface has seemingly random irregularities, at least on a small scale.

In this particular case, however, it turns out that on a larger scale
the surface follows a rather smooth curve. And indeed, as the picture on
page 178 shows, it is even possible to find cellular automata that yield
overall shapes that closely approximate perfect circles.

But it is certainly not the case that all two-dimensional cellular
automata produce only simple overall shapes. The pictures on pages
179-181 show one rule, for example, that does not. The rule is actually
rather simple: it just states that a particular cell should become black
whenever exactly three of its eight neighbors—including diagonals—are
black, and otherwise it should stay the same color as it was before.

In order to get any kind of growth with this rule one must start
with at least three black cells. The picture at the top of page 179 shows
what happens with various numbers of black cells. In some cases the
patterns produced are fairly simple—and typically stop growing after
just a few steps. But in other cases, much more complicated patterns are
produced, which often apparently go on growing forever.

The pictures on page 181 show the behavior produced by starting
from a row of eleven black cells, and then evolving for several hundred
steps. The shapes obtained seem continually to go on changing, with no
simple overall form ever being produced.

And so it seems that there can be great complexity not only in
the detailed arrangement of black and white cells in a two-dimensional
cellular automaton pattern, but also in the overall shape of the pattern.
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step 100
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T
A
step 17

dimensional cellular automaton that yields a pattern with a rough surface. The rule used here

condition in the case shown consists of a row of 7 black cells. In an extension to 8 neighbors of the

were black on the step before, and should otherwise stay the same color as it was before. The initial
scheme used in the pictures a few pages back, the rule has code number 175850.

includes diagonal neighbors, and so involves a total of 8 neighbors for each cell, as indicated in the icon
on the left. The rule specifies that the center cell should become black if either 3 or 5 of its 8 neighbors

A two-

—H



STEPHEN WOLFRAM A NEW KIND OF SCIENCE

A ﬂ%‘ —
h,[_.. E.L"mﬁ%ﬂ
= -" 'III- =M= =

e s ﬁh

_—Ll;_

S =i
"ﬁﬂé:_;ﬁuﬂq '
ey

—

A cellular automaton that yields a pattern whose shape closely approximates a circle. The rule used is of the same kind as on the
previous page, but now takes the center cell to become black only if it has exactly 3 black neighbors. If it has 1, 2 or 4 black neighbors
then it stays the same color as it was before, and if it has 5 or more black neighbors, then it becomes white on the next step (code
number 746). The initial condition consists of a row of 7 black cells, just as in the picture on the previous page. The pattern shown here
is the result of 400 steps in the evolution of the system. After t steps, the radius of the approximate circle is about 0.37 ¢t.
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. b $ o

3 initial black cells 5 initial black cells 7 initial black cells 9 initial black cells 11 initial black cells

.

13 initial black cells 15 initial black cells 17 initial black cells 19 initial black cells 21 initial black cells

23 initial black cells 25 initial black cells 27 initial black cells 29 initial black cells 31 initial black cells

Patterns produced by evolution according to a simple two-dimensional cellular automaton rule starting from rows of black
cells of various lengths. The rule used specifies that a particular cell should become black if exactly three out of its eight
neighbors (with diagonal neighbors included) are black (code number 174826). The patterns in the picture are obtained by 60
steps of evolution according to this rule. The smaller patterns above have all stopped growing after this number of steps, but
many of the other patterns apparently go on growing forever.

So what about three-dimensional cellular automata? It is
straightforward to generalize the setup for two-dimensional rules to the
three-dimensional case. But particularly on a printed page it is fairly
difficult to display the evolution of a three-dimensional cellular
automaton in a way that can readily be assimilated.

Pages 182 and 183 do however show a few examples of
three-dimensional cellular automata. And just as in the two-dimensional
case, there are some specific new phenomena that can be seen. But overall
it seems that the basic kinds of behavior produced are just the same as in
one and two dimensions. And in particular, the basic phenomenon of
complexity does not seem to depend in any crucial way on the

dimensionality of the system one looks at.
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13 initial black cells

15 initial black cells

11 initial black cells

Three-dimensional objects formed by stacking successive
two-dimensional patterns produced in the evolution of the
cellular automaton from the previous page. The large picture
on the right shows 200 steps of evolution.

17 initial black cells
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step 100

step 200

step 300

step 400

step 500

Stages in the evolution of the cellular automaton from the facing page, starting with an initial condition consisting of a row of 11 black cells.
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step 10

step 10

Examples of three-dimensional cellular automata. In the top set of pictures, the rule specifies that a

cell should become black whenever any of the six neighbors with which it shares a face were black

on the step before. In the bottom pictures, the rule specifies that a cell should become black only
& — © e se o b

when exactly one of its six neighbors was black on the step before. In both cases, the initial condition
contains a single black cell. In the top pictures, the limiting shape obtained is a regular octahedron. In
the bottom pictures, it is a nested pattern analogous to the two-dimensional one on page 171.
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step 1

Further examples of three-dimensional cellular automata, but now with rules that depend on all 26
neighbors that share either a face or a corner with a particular cell. In the top pictures, the rule

specifies that a cell should become black when exactly one of its 26 neighbors was black on the

step before.

In the bottom pictures, the rule specifies that a cell should become black only when
its 26 neighbors were black on the step before. In the top pictures, the initial

exactly two of

condition contains a single black cell; in the bottom pictures, it contains a line of three black cells.
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Turing Machines

Much as for cellular automata, it is straightforward to generalize
Turing machines to two dimensions. The basic idea—shown in the
picture below—is to allow the head of the Turing machine to move
around on a two-dimensional grid rather than just going backwards and

forwards on a one-dimensional tape.

\ \
| | |
[) . = = L L L I R ||
N o e IS
\ \ \ \ L
step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9
T T
} I
éi =
ﬁ E: =3
I e S e
7\\1 7\7\\\ H\\i H\\i H\\i H\\i
step 10 step 20 step 30 step 40 step 50 step 60
An example of a two-dimensional Turing machine
whose head has three possible states. The black dot B A —- P E-D N = i ] — Q

represents the position of the head at each step, and

the three possible orientations of the arrow on this dot correspond to the three possible states of the head. The rule specifies
in which of the four possible directions the head should move at each step. Note that the orientation of the arrow representing
the state of the head has no direct relationship to directions on the grid—or to which way the head will move at the next step.

When we looked at one-dimensional Turing machines earlier in
this book, we found that it was possible for them to exhibit complex
behavior, but that such behavior was rather rare.

In going to two dimensions we might expect that complex behavior
would somehow immediately become more common. But in fact what
we find is that the situation is remarkably similar to one dimension.

For Turing machines with two or three possible states, only
repetitive and nested behavior normally seem to occur. With four
states, more complex behavior is possible, but it is still rather rare.

The facing page shows some examples of two-dimensional Turing
machines with four states. Simple behavior is overwhelmingly the most
common. But out of a million randomly chosen rules, there will typically
be a few that show complex behavior. Page 186 shows one example where
the behavior seems in many respects completely random.
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(c) (step 3000)

(a) (step 1000)

(e) (step 10000)

(d) (step 8000)

(a)‘lﬂm ‘m~ 5] ‘l~ l‘EI*! ‘l~ n ‘m~ ] ‘I*ﬁ ‘a~ D»‘

Examples of patterns produced by two-dimensional Turing machines
whose heads have four possible states. In each case, all cells are
initially white, and one of the rules given on the left is applied for the
specified number of steps. Note that in the later cases shown, the
(d)‘lﬂa ‘m~ = ‘l~ o ‘Eh & ‘l~ L] ‘MME ‘l~ \}‘E~ L ‘ head often visits the same position on the grid many times.

(b)‘l~ & ‘m~l‘l~ ] ‘EHI ‘l~ ) ‘m~ﬁ ‘l~ ! ‘EP I»‘

(c)‘l~ D‘mwu ‘IMI ‘EP B-‘l~ 5| ‘m~ﬁ ‘l~ & ‘EP m ‘

(e;‘l~ o ‘m~ & ‘l~ ™ ‘Eh = ‘l~i ‘m~tl ‘I~ D‘EP L ‘
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[smnmams)
+

100,000 steps

500,000 steps

The path traced out by the head of the two-dimensional Turing machine with rule (e) from the previous page. There are
many seemingly random fluctuations in this path, though in general it tends to grow to the right.
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Substitution Systems and Fractals

One-dimensional substitution systems of the kind we discussed on page
82 can be thought of as working by progressively subdividing each
element they contain into several smaller elements.

One can construct two-dimensional substitution systems that

work in essentially the same way, as shown in the pictures below.

step 1 step 2 step 3 step 4

akese
step 6 step 7 step 8

A two-dimensional substitution system in which each square is replaced by four
smaller squares at every step according to the rule shown on the left. The pattern
generated has a nested form.

The next page gives some more examples of two-dimensional
substitution systems. The patterns that are produced are certainly quite
intricate. But there is nevertheless great regularity in their overall
forms. Indeed, just like patterns produced by one-dimensional
substitution systems on page 83, all the patterns shown here ultimately
have a simple nested structure.

Why does such nesting occur? The basic reason is that at every
step the rules for the substitution system simply replace each black
square with several smaller black squares. And on subsequent steps,

each of these new black squares is then in turn replaced in exactly the
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(d)

(g)

Patterns  from various two-dimensional
substitution systems. In each case what is
shown is the pattern obtained after five m‘.ﬂﬁ‘mﬂ@
steps of evolution according to the rules on

the right, starting with a single black square. (g) ‘ .ﬂﬁ ‘ Dﬂ@ ‘ h) ‘ .ﬂﬁ ‘ Dﬂ@

(a)

(c)
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(e)

(i)
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same way, so that it ultimately evolves to produce an identical copy of
the whole pattern.

But in fact there is nothing about this basic process that depends
on the squares being arranged in any kind of rigid grid. And the picture
below shows what happens if one just uses a simple geometrical rule to
replace each black square by two smaller black squares. The result, once
again, is that one gets an intricate but highly regular nested pattern.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11

The pattern obtained by starting with a single black square and then at every step replacing each

black cell with two smaller black cells according to the simple geometrical rule shown on the left.

. - ‘ Note that in applying the rule to a particular square, one must take account of the orientation of
— that square. The final pattern obtained has an intricate nested structure.

In a substitution system where black squares are arranged on a
grid, one can be sure that different squares will never overlap. But if
there is just a geometrical rule that is used to replace each black square,
then it is possible for the squares produced to overlap, as in the picture
on the next page. Yet at least in this example, the overall pattern that is
ultimately obtained still has a purely nested structure.

The general idea of building up patterns by repeatedly applying

geometrical rules is at the heart of so-called fractal geometry. And the
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step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 8 step 9 step 10

The pattern obtained by repeatedly applying the simple geometrical rule shown on the right.
Even though this basic rule does not involve overlapping squares, the pattern obtained even by
step 3 already has squares that overlap. But the overall pattern obtained after a large number of

steps still has a nested form.

pictures on the facing page show several more examples of fractal
patterns produced in this way.

The details of the geometrical rules used are different in each
case. But what all the rules have in common is that they involve
replacing one black square by two or more smaller black squares. And
with this kind of setup, it is ultimately inevitable that all the patterns
produced must have a completely regular nested structure.

So what does it take to get patterns with more complicated
structure? The basic answer, much as we saw in one-dimensional
substitution systems on page 85, is some form of interaction between
different elements—so that the replacement for a particular element at
a given step can depend not only on the characteristics of that element
itself, but also on the characteristics of other neighboring elements.

But with geometrical replacement rules of the kind shown on the
facing page there is a problem with this. For elements can end up
anywhere in the plane, making it difficult to define an obvious notion
of neighbors. And the result of this has been that in traditional fractal
geometry the idea of interaction between elements is not considered—
so that all patterns that are produced have a purely nested form.
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(d)

H e H oo

(a) (c)

H % H 3%

(b) (d)

Examples of fractal patterns produced by
repeatedly applying the geometrical rules

shown for a total of 12 steps. The details of
each pattern are different, but in all cases

the patterns have a nested overall structure.
The presence of this nested structure is an
inevitable consequence of the fact that the
rule for replacing an element at a particular
position does not depend in any way on
other elements.

(c)

Yet if one sets up elements on a grid it is straightforward to allow
the replacements for a given element to depend on its neighbors, as in
the picture at the top of the next page. And if one does this, one
immediately gets all sorts of fairly complicated patterns that are often
not just purely nested—as illustrated in the pictures on the next page.

In Chapter 3 we discussed both ordinary one-dimensional
substitution systems, in which every element is replaced at each step,
and sequential substitution systems, in which just a single block of
elements are replaced at each step. And what we did to find which
block of elements should be replaced at a given step was to scan the
whole sequence of elements from left to right.
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step 1 step 2 step 3 step 4 step 5 step 6 step 7

A two-dimensional neighbordependent substitution system. The
grid of cells is assumed to wrap around in both its dimensions. -HE ]HH -*ﬂ j*ﬂ DHE

STFM
§ S
b : R *N\\\\\

Patterns generated by 8 steps of evolution in various (@ |IFIEM&® o MPAEREE o FAEF oo dEMHR
two-dimensional neighbordependent substitution systems. e Eddd " PAEF oMEEE »dAEE

So how can this be generalized to higher dimensions? On a
two-dimensional grid one can certainly imagine snaking backwards and
forwards or spiralling outwards to scan all the elements. But as soon as
one defines any particular order for elements—however they may be laid
out—this in effect reduces one to dealing with a one-dimensional system.

And indeed there seems to be no immediate way to generalize
sequential substitution systems to two or more dimensions. In Chapter
9, however, we will see that with more sophisticated ideas it is in fact
possible in any number of dimensions to set up substitution systems in
which elements are scanned in order—but whatever order is used, the

results are in some sense always the same.
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Network Systems

One feature of systems like cellular automata is that their elements are
always set up in a regular array that remains the same from one step to
the next. In substitution systems with geometrical replacement rules
there is slightly more freedom, but still the elements are ultimately
constrained to lie in a two-dimensional plane.

Indeed, in all the systems that we have discussed so far there is in
effect always a fixed underlying geometrical structure which remains
unchanged throughout the evolution of the system.

It turns out, however, that it is possible to construct systems in
which there is no such invariance in basic structure, and in this section
I discuss as an example one version of what I will call network systems.

A network system is fundamentally just a collection of nodes
with various connections between these nodes, and rules that specify
how these connections should change from one step to the next.

At any particular step in its evolution, a network system can be
thought of a little like an electric circuit, with the nodes of the network
corresponding to the components in the circuit, and the connections to
the wires joining these components together.

And as in an electric circuit, the properties of the system depend
only on the way in which the nodes are connected together, and not on
any specific layout for the nodes that may happen to be used.

Of course, to make a picture of a network system, one has to
choose particular positions for each of its nodes. But the crucial point is
that these positions have no fundamental significance: they are
introduced solely for the purpose of visual representation.

In constructing network systems one could in general allow each
node to have any number of connections coming from it. But at least for
the purposes of this section nothing fundamental turns out to be lost if
one restricts oneself to the case in which every node has exactly two
outgoing connections—each of which can then either go to another
node, or can loop back to the original node itself.

With this setup the very simplest possible network consists of

just one node, with both connections from the node looping back, as
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in the top picture below. With two nodes, there are already three
possible patterns of connections, as shown on the second line below.
And as the number of nodes increases, the number of possible

different networks grows very rapidly.

A Dy Ry N B B
(o (Do (T

Possible networks formed by having one, two or three nodes, with two connections coming out of
each node. The picture shows all inequivalent cases ignoring labels, but excludes networks in which
there are nodes which cannot be reached by connections from other nodes.

For most of these networks there is no way of laying out their
nodes so as to get a picture that looks like anything much more than a
random jumble of wires. But it is nevertheless possible to construct
many specific networks that have easily recognizable forms, as shown
in the pictures on the facing page.

Each of the networks illustrated at the top of the facing page
consists at the lowest level of a collection of identical nodes. But the

remarkable fact that we see is that just by changing the pattern of
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(a) one dimension

(c) three dimensions

(b) two dimensions

Examples of networks that correspond to arrays in one, two and three dimensions. At an underlying level, each network
consists just of a collection of nodes with two connections coming from each node. But by setting up appropriate
patterns for these connections, one can get networks with very different effective geometrical structures.

connections between these nodes it is possible to get structures that
effectively correspond to arrays with different numbers of dimensions.

Example (a) shows a network that is effectively one-dimensional.
The network consists of pairs of nodes that can be arranged in a
sequence in which each pair is connected to one other pair on the left
and another pair on the right.

But there is nothing intrinsically one-dimensional about the
structure of network systems. And as example (b) demonstrates, it is
just a matter of rearranging connections to get a network that looks like
a two-dimensional rather than a one-dimensional array. Each individual
node in example (b) still has exactly two connections coming out of it,
but now the overall pattern of connections is such that every block of
nodes is connected to four rather than two neighboring blocks, so that

the network effectively forms a two-dimensional square grid.
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Example (c) then shows that with appropriate connections, it is also
possible to get a three-dimensional array, and indeed using the same
principles an array with any number of dimensions can easily be obtained.

The pictures below show examples of networks that form infinite
trees rather than arrays. Notice that the first and last networks shown
actually have an identical pattern of connections, but they look different
here because the nodes are arranged in a different way on the page.

Ry I e B O o
P BB
A B B
R M oo I I o M S
B H R B
P E B B
5 BB
R I oo M S M S

(a)

(b)

(c)

Examples of networks that correspond to infinite trees. Note that networks (a) and (c) are identical, though they look different
because the nodes are laid out differently on the page. All the networks shown are truncated at the leaves of each tree.
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In general, there is great variety in the possible structures that
can be set up in network systems, and as one further example the
picture below shows a network that forms a nested pattern.

An example of a network that forms a nested
geometrical structure. As in all the other networks
shown, each node here is identical, and has just
two connections coming out of it.

In the pictures above we have seen various examples of
individual networks that might exist at a particular step in the
evolution of a network system. But now we must consider how such
networks are transformed from one step in evolution to the next.

The basic idea is to have rules that specify how the connections
coming out of each node should be rerouted on the basis of the local
structure of the network around that node.

But to see the effect of any such rules, one must first find a
uniform way of displaying the networks that can be produced. The
pictures at the top of the next page show one possible approach based on
always arranging the nodes in each network in a line across the page.

And although this representation can obscure the geometrical structure
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(a)

o D

(b)

0883838888

(c)

Networks from previous pictures laid out in a uniform way. Network (a) corresponds to a
one-dimensional array, (b) to a two-dimensional array, and (c) to a tree. In the layout shown here, all
the networks have their nodes arranged along a line. Note that in cases (a) and (b) the connections are
arranged so that the arrays effectively wrap around; in case (c) the leaves of the tree are taken to have
connections that loop back to themselves.

of a particular network, as in the second and third cases above, it more
readily allows comparison between different networks.

In setting up rules for network systems, it is convenient to
distinguish the two connections that come out of each node. And in the
pictures above one connection is therefore always shown going above
the line of nodes, while the other is always shown going below.

The pictures on the facing page show examples of evolution
obtained with four different choices of underlying rules. In the first
case, the rule specifies that the “above” connection from each node
should be rerouted so that it leads to the node obtained by following the
“below” connection and then the “above” connection from that node.
The “below” connection is left unchanged.

The other rules shown are similar in structure, except that in
cases (c) and (d), the “above” connection from each node is rerouted so
that it simply loops back to the node itself.

In case (d), the result of this is that the network breaks up into
several disconnected pieces. And it turns out that none of the rules I
consider here can ever reconnect these pieces again. So as a
consequence, what I do in the remainder of this section is to track only
the piece that includes the first node shown in pictures such as those
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(a)

The evolution of network systems with four different choices of underlying rules. Successive steps in the evolution are shown
on successive lines down the page. In case (a), the “above” connection of each node is rerouted at each step to lead to the
node reached by following first the below connection and then the above connection from that node; the below connection is
left unchanged. In case (b), the above connection of each node is rerouted to the node reached by following the above
connection and then the above connection again; the below connection is left unchanged. In case (c), the above connection of
each node is rerouted so as to loop back to the node itself, while the below connection is left unchanged. And in case (d), the
above connection is rerouted so as to loop back, while the below connection is rerouted to lead to the node reached by
following the above connection. With the “above” connection labelled as 1 and the “below"” connection as 2, these rules

(b)

(c)

(d)

correspond to replacing connections {{1}, {2}} at each node by (a) {{2, 1}, {2}}, (b) {{1, 1}, {2}}, (c) {{}, {2}}, and (d) {{}, {1}}.

above. And in effect, this then means that other nodes are dropped from

the network, so that the total size of the network decreases.

By changing the underlying rules, however, the number of nodes

in a network can also be made to increase. The basic way this can be

done is by breaking a connection coming from a particular node by

inserting a new node and then connecting that new node to nodes

obtained by following connections from the original node.

The pictures on the next page show examples of behavior

produced by two rules that use this mechanism. In both cases, a new

node is inserted in the “above” connection from each existing node in
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the network. In the first case, the connections from the new node are
exactly the same as the connections from the existing node, while in
the second case, the “above” and “below” connections are reversed.

(a) (b)

Evolution of network systems whose rules involve the addition of new nodes. In both cases, the new nodes are inserted in
the “above” connection from each node. In case (a), the connections from the new node lead to the same nodes as the
connections from the original node. In case (b), the above and below connections for the new node are reversed. In the
pictures above, new nodes are placed immediately after the nodes that give rise to them, and gray lines are used to indicate
the origin of each node. Note that the initial conditions consist of a network that contains only a single node.

But in both cases the behavior obtained is quite simple. Yet much
like neighbor-independent substitution systems these network systems
have the property that exactly the same operation is always performed
at each node on every step.

In general, however, one can set up network systems that have
rules in which different operations are performed at different nodes,
depending on the local structure of the network near each node.

One simple scheme for doing this is based on looking at the two
connections that come out of each node, and then performing one
operation if these two connections lead to the same node, and another if
the connections lead to different nodes.

The pictures on the facing page show some examples of what can
happen with this scheme. And again it turns out that the behavior is
always quite simple—with the network having a structure that
inevitably grows in an essentially repetitive way.

But as soon as one allows dependence on slightly longer-range

features of the network, much more complicated behavior immediately
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Examples of network systems with rules that cause different operations to be performed at different nodes. Each rule contains
two cases, as shown above. The first case specifies what to do if both connections from a particular node lead to the same node;
the second case specifies what to do when they lead to different nodes. In the rules shown, the connections from a particular
node (indicated by a solid circle) and from new nodes created from this node always go to the nodes indicated by open circles that
are reached by following just a single above or below connection from the original node. Even if this restriction is removed,
however, more complicated behavior does not appear to be seen.

becomes possible. And indeed, the pictures on the next two pages show
examples of what can happen if the rules are allowed to depend on the
number of distinct nodes reached by following not just one but up to
two successive connections from each node.

With such rules, the sequence of networks obtained no longer
needs to form any kind of simple progression, and indeed one finds that
even the total number of nodes at each step can vary in a way that
seems in many respects completely random.

When we discuss issues of fundamental physics in Chapter 9 we
will encounter a variety of other types of network systems—and I
suspect that some of these systems will in the end turn out to be closely

related to the basic structure of space and spacetime in our universe.
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(a)

(b)

(c)

(2, 31>t} {1, (21, (2,47 ({12, 2), {}} (1)}

(01, 13> {1}, ({2, 1}, {2, 1]}, {1, 23> {{{}, {1, T3, A01, T} {3} {2, 13> {{{], (1} {{1), {2, 11}}, {2, 2} > {{{1, 1}, {2, 1}}, {{2}, {2, 1}}],

{1, 13> {{{}, (1, 13}, (2]}, {1, 2] ({2}, {{}, {}}],
(2, 1}> ({2, 1}, {{} {1}}}, {2, 2} > {{{2}, (1]}, {}}, {2, 3} {1, 2}, {2}}, (2,4} ({{1}, {1}}, {2, 1}}}

(2,31 {{2, 1], {2}], {2, 4] {{{1], {1, 2]}, {{1, 2], {}}]}

(1, 1= {01, 1} {11}, {2}) {1, 2} > {{{1, 2}, {2}}, ({2, 2}, {(}}}, (2, 1} > {{{2, 2}, (2]}, ({1}, {}}}, {2, 2} > ({1}, {1}}, ({2, 1}, {1, 1}}},

Network systems in which the rule depends on the number of distinct nodes reached by going up to distance two away from each
node. The plots show the total number of nodes obtained at each step. In cases (a) and (b), the behavior of the system is eventually
repetitive. In case (c), it is nested—the size of the network at step t is related to the number of 1's in the base 2 digit sequence of t.
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(01, 13> ({1, 2}, {1, 2}}, {1}, {1,2)>1{{2, 2}, {1}, {1}}}, {2, 1}>{{1], {{}, {2]}}, (2, 2} > {{1, 2}, {2, 1}}, {2, 3}~ {{{2, 1], {2}}, {1}],
(2,4} ({1}, {1, 1]}

(01, T3> {01 {01, 13,41, 203), {1, 28> A{{} {13} {{1, 1), {1, 2}}}, {2, 1}>{{2}, {}}, {2, 2} > {{{2, 1], {1}}, {{1, 1}, {2}]},
(2,31-112, 2}, (2]}, (2,4} {{2, 1}, {2]}}

Network systems in which the total number of nodes obtained on successive steps appears to vary in a largely random
way forever. About one in 10,000 randomly chosen network systems seem to exhibit the kind of behavior shown here.
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Multiway Systems

The network systems that we discussed in the previous section do not
have any underlying grid of elements in space. But they still in a sense
have a simple one-dimensional arrangement of states in time. And in fact,
all the systems that we have considered so far in this book can be thought
of as having the same simple structure in time. For all of them are
ultimately set up just to evolve progressively from one state to the next.
Multiway systems, however, are defined so that they can have not
just a single state, but a whole collection of possible states at any given step.

The picture below shows a very simple example of such a system.

! E %
O
A very simple multiwvay system in m
which one element in each sequence 0 M
is replaced at each step by either one
or two elements. Thg main feature of 0 0O OO CCED
multiway systems is that all the
distinct sequences that result are kept.
O [ OO 1 I
0O I 1 11 O T

Each state in the system consists of a sequence of elements, and
in the particular case of the picture above, the rule specifies that at each
step each of these elements either remains the same or is replaced by a
pair of elements. Starting with a single state consisting of one element,
the picture then shows that applying these rules immediately gives two
possible states: one with a single element, and the other with two.

Multiway systems can in general use any sets of rules that define
replacements for blocks of elements in sequences. We already saw
exactly these kinds of rules when we discussed sequential substitution
systems on page 88. But in sequential substitution systems the idea was

to do just one replacement at each step. In multiway systems, however,
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the idea is to do all possible replacements at each step—and then to
keep all the possible different sequences that are generated.

The pictures below show what happens with some very simple
rules. In each of these examples the behavior turns out to be rather
simple—with for example the number of possible sequences always

increasing uniformly from one step to the next.
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Examples of simple multiway systems. The number of distinct sequences at step t in these three systems is respectively
Ceiling[t/2], t and Fibonacci[t + 1] (which increases approximately like 7.678).

In general, however, this number need not exhibit such uniform

growth, and the pictures below show examples where fluctuations occur.
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Examples of multiway systems with slightly more complicated behavior. The plots on the .
right show the total number of possible states obtained at each step, and the differences of Sf
these numbers from one step to the next. In both cases, essentially repetitive behavior is oL
seen, every 40 and 161 steps respectively. Note that in case (a), the total number of possible 2
states at step t increases roughly like t?, while in case (b) it increases only like t. 5 o e o
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But in both these cases it turns out to be not too long before these
fluctuations essentially repeat. The picture below shows an example
where a larger amount of apparent randomness is seen. Yet even in this
case one finds that there ends up again being essential repetition—
although now only every 1071 steps.

(differences)

0 50 100 150 200 250 0 100 200 300 400 500

A multiway system with behavior that shows some signs of apparent randomness. The rule for this system involves three possible
replacements. Note that the first replacement only removes elements and does not insert new ones. In the pictures sequences
containing zero elements therefore sometimes appear. At least with the initial condition used here, despite considerable early apparent
randomness, the differences in number of elements do repeat (shifted by 1) every 1071 steps.
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If one looks at many multiway systems, most either grow
exponentially quickly, or not at all; slow growth of the kind seen on the
facing page is rather rare. And indeed even when such growth leads to a
certain amount of apparent randomness it typically in the end seems to
exhibit some form of repetition. If one allows more rapid growth,
however, then there presumably start to be all sorts of multiway
systems that never show any such regularity. But in practice it tends to
be rather difficult to study these kinds of multiway systems—since the
number of states they generate quickly becomes too large to handle.

One can get some idea about how such systems behave, however,
just by looking at the states that occur at early steps. The picture below

shows an example—with ultimately fairly simple nested behavior.

? =
\4 step 1 step 2 stop 3
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——
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step 10

The collections of states generated on successive steps by a simple multiway system
with rapid growth shown on page 205. The particular rule used here eventually

generates all states beginning with a white cell. At step t there are Fibonacci[t + 1]

states; a given state with m white cells and n black cells appears at step 2m+n-1.

The pictures on the next page show some more examples.
Sometimes the set of states that get generated at a particular step show
essential repetition—though often with a long period. Sometimes this
set in effect includes a large fraction of the possible digit sequences of a
given length—and so essentially shows nesting. But in other cases there
is at least a hint of considerably more complexity—even though the
total number of states may still end up growing quite smoothly.
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Collections of states generated at particular (a) E ”7’ fe) ?‘E"Ei‘ “’“EE‘?‘
steps in the evolution of various multiway ?‘%‘?‘ m‘%‘ﬁ‘ rg»‘ﬁ‘ﬁ‘ﬂ‘ W‘?‘E‘%‘

systems. Rule (k) was shown on the

previous page; rules (d) and (f) on page 205. W‘?‘E‘Eﬁ‘ W‘ME‘ w m (m)

(e)

Looking carefully at the pictures of multiway system evolution
on previous pages, a feature one notices is that the same sequences
often occur on several different steps. Yet it is a consequence of the
basic setup for multiway systems that whenever any particular
sequence occurs, it must always lead to exactly the same behavior.

So this means that the complete evolution can be represented as
in the picture at the top of the facing page, with each sequence shown
explicitly only once, and any sequence generated more than once
indicated just by an arrow going back to its first occurrence.
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The evolution of a multiway
system, first with every
sequence explicitly shown
at each step, and then with
every sequence only ever
shown once.

But there is no need to arrange the picture like this: for the whole

behavior of the multiway system can in a sense be captured just by

giving the network of what sequence leads to what other. The picture

below shows stages in building up such a network. And what we see is

that just as the network systems that we discussed in the previous

section can build up their own pattern of connections in space, so also

multiway systems can in effect build up their own pattern of

connections in time—and this pattern can often be quite complicated.
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step 5 step 6

step 7

step 8

The network built up by the evolution of the multiway system from the top of the page. This network in effect represents a network

of connections in time between states of the multiway system.
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Systems Based on Constraints

In the course of this book we have looked at many different kinds of
systems. But in one respect all these systems have ultimately been set
up in the same basic way: they are all based on explicit rules that
specify how the system evolves from step to step.

In traditional science, however, it is common to consider systems
that are set up in a rather different way: instead of having explicit rules
for evolution, the systems are just given constraints to satisfy.

As a simple example, consider a line of cells in which each cell is
colored black or white, and in which the arrangement of colors is subject
to the constraint that every cell should have exactly one black and one
white neighbor. Knowing only this constraint gives no explicit procedure
for working out the color of each cell. And in fact it may at first not be
clear that there will be any arrangement of colors that can satisfy the
constraint. But it turns out that there is—as shown below.

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have exactly one black and one white neighbor. The pattern shown is the only
possible one that satisfies this constraint. The idea of implicitly determining the behavior of a system
by giving constraints that it must satisfy is common in traditional science and mathematics.

And having seen this picture, one might then imagine that there
must be many other patterns that would also satisfy the constraint.
After all, the constraint is local to neighboring cells, so one might
suppose that parts of the pattern sufficiently far apart should always be
independent. But in fact this is not true, and instead the system works a
bit like a puzzle in which there is only one way to fit in each piece. And
in the end it is only the perfectly repetitive pattern shown above that
can satisfy the required constraint at every cell.

Other constraints, however, can allow more freedom. Thus, for
example, with the constraint that every cell must have at least one
neighbor whose color is different from its own, any of the patterns in the
picture at the top of the facing page are allowed, as indeed is any pattern

that involves no more than two successive cells of the same color.
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A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have at least one neighbor whose color is different from its own. There are many
possible arrangements of colors that satisfy this constraint. Some, like the first arrangement above,
look quite random. But others, like the second two arrangements above, are simple and repetitive. It
turns out that in a one-dimensional system no set of local constraints can force arrangements of
more complicated types.

But while the first arrangement of colors shown above looks
somewhat random, the last two are simple and purely repetitive.

So what about other choices of constraints? We have seen in this
book many examples of systems where simple sets of rules give rise to
highly complex behavior. But what about systems based on constraints?
Are there simple sets of constraints that can force complex patterns?

It turns out that in one-dimensional systems there are not. For in
one dimension it is possible to prove that any local set of constraints
that can be satisfied at all can always be satisfied by some simple and
purely repetitive arrangement of colors.

But what about two dimensions? The proof for one dimension
breaks down in two dimensions, and so it becomes at least conceivable
that a simple set of constraints could force a complex pattern to occur.

As a first example of a two-dimensional system, consider an array
of black and white cells in which the constraint is imposed that every
black cell should have exactly one black neighbor, and every white cell
should have exactly two white neighbors.

A system consisting of a grid of black and
white cells defined by the constraint that
every black cell should have exactly one
black neighbor among its four neighbors,
and every white cell should have exactly
two white neighbors. The infinite
repetitive pattern shown here, together
with its rotations and reflections, is the
only one that satisfies this constraint.
(The picture is assumed to wrap around
at each edge.) The pattern can be viewed
as a tessellation of 5 x 5 blocks of cells.
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As in one dimension, knowing the constraint does not
immediately provide a procedure for finding a pattern which satisfies it.
But a little experimentation reveals that the simple repetitive pattern

above satisfies the constraint, and in fact it is the only pattern to do so.
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Patterns satisfying constraints which specify that every black cell and every white cell must have a certain fixed number of black
and white neighbors. The blank rectangles in the upper right indicate constraints that cannot be satisfied by any pattern
whatsoever. Most of the constraints are satisfied by a single pattern, together with its rotations and reflections. In some cases,
two distinct patterns are possible, and in a few cases, an infinite set of patterns are possible. In all cases where the constraints can
be satisfied at all, a simple repetitive pattern nevertheless suffices.
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What about other constraints? The pictures on the facing page
show schematically what happens with constraints that require each
cell to have various numbers of black and white neighbors.

Several kinds of results are seen. In the two cases shown as blank
rectangles on the upper right, there are no patterns at all that satisfy the
constraints. But in every other case the constraints can be satisfied, though
typically by just one or sometimes two simple infinite repetitive patterns.
In the three cases shown in the center a whole range of mixtures of different
repetitive patterns are possible. But ultimately, in every case where some
pattern can work, a simple repetitive pattern is all that is needed.

So what about more complicated constraints? The pictures below
show examples based on constraints that require the local arrangement
of colors around every cell to match a fixed set of possible templates.

T
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Systems specified by the constraint that the local arrangement of colors around every cell must match
the fixed set of possible templates shown. Note that these templates apply to every cell, with
templates of neighboring cells overlapping. Pattern (a) can be viewed as formed from a tessellation of
5 x 10 blocks of cells; pattern (b) from a tessellation of 24 x 24 blocks. With the numbering scheme for
constraints used on the next two pages the cases shown here correspond to 1384774 and 328778790.

There are a total of 4,294,967,296 possible sets of such templates.
And of these, 766,979,044 lead to constraints that cannot be satisfied by
any pattern. But among the 3,527,988,252 that remain, it turns out that
every single one can be satisfied by a simple repetitive pattern. In fact the
number of different repetitive patterns that are ever needed is quite small:
if a particular constraint can be satisfied by any pattern, then one of the

set of 171 repetitive patterns on the next two pages is always sufficient.
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The complete collection of all 171 patterns needed to satisfy constraints of the type shown on the previous page. If none of these 171
patterns satisfy a particular constraint, then it follows that no pattern at all will satisfy the constraint. The patterns are labelled by
numbers which specify the minimal constraint which requires the given pattern. Patterns differing by overall reflection, rotation or

interchange of black and white are not shown.
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So how can one force more complex patterns to occur?

The basic answer is that one must extend at least slightly the
kinds of constraints that one considers. And one way to do this is to
require not only that the colors around each cell match a set of
templates, but also that a particular template from this set must appear
at least somewhere in the array of cells.

The pictures below show a few examples of patterns determined
by constraints of this kind. A typical feature is that the patterns are
divided into several separate regions, often emanating from some kind

of center. But at least in all the examples below, the patterns that occur

in each individual region are still simple and repetitive.

151828 86294 4670324 1428252506 1143305038

106389882 1125528937 339833662 375604536 1378162297

Examples of patterns produced by systems in which not only must the arrangement of colors in each neighborhood match one of a
fixed set of templates, but also a certain template from this set must occur at least once in the pattern. The constraints are numbered
as before, and in each picture the template that must occur is shown at the center. Constraint 1125528937 leads to a pattern that
repeats in 98 x 98 blocks. The last pattern shown is also repetitive, repeating every 56 cells on the diagonal.

So how can one find constraints that force more complex
patterns? To do so has been fairly difficult, and in fact has taken almost
as much computational effort as any other single result in this book.

The basic problem is that given a constraint it can be extremely
difficult to find out what pattern—if any—will satisfy the constraint.

In a system like a cellular automaton that is based on explicit

rules, it is always straightforward to take the rule and apply it to see
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what pattern is produced. But in a system that is based on constraints,
there is no such direct procedure, and instead one must in effect always
go outside of the system to work out what patterns can occur.

The most straightforward approach might just be to enumerate
every single possible pattern and then see which, if any, of them satisfy
a particular constraint. But in systems containing more than just a few
cells, the total number of possible patterns is absolutely astronomical,
and so enumerating them becomes completely impractical.

A more practical alternative is to build up patterns iteratively,
starting with a small region, and then adding new cells in essentially all
possible ways, at each stage backtracking if the constraint for the
system does not end up being satisfied.

The pictures on the next page show a few sequences of patterns
produced by this method. In some cases, there emerge quite quickly
simple repetitive patterns that satisfy the constraint. But in other
cases, a huge number of possibilities have to be examined in order to
find any suitable pattern.

And what if there is no pattern at all that can satisfy a particular
constraint? One might think that to demonstrate this would effectively
require examining every conceivable pattern on the infinite grid of
cells. But in fact, if one can show that there is no pattern that satisfies
the constraint in a limited region, then this proves that no pattern can
satisfy the constraint on the whole grid. And indeed for many
constraints, there are already quite small regions for which it is possible
to establish that no pattern can be found.

But occasionally, as in the third picture on the next page, one
runs into constraints that can be satisfied for regions containing
thousands of cells, but not for the whole grid. And to analyze such cases
inevitably requires examining huge numbers of possible patterns.

But with an appropriate collection of tricks, it is in the end
feasible to take almost any system of the type discussed here, and
determine what pattern, if any, satisfies its constraint.

So what kinds of patterns can be needed? In the vast majority of
cases, simple repetitive patterns, or mixtures of such patterns, are the
only ones that are needed.
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Stages in finding patterns that satisfy constraints (a) 4670324, (b) 373384574, and (c) 387520105. Gray is
used to indicate cells whose colors have not yet been determined. The first stage shown in each case
corresponds to cells whose colors can be deduced immediately from the presence of a particular
template at the center. In case (a) choices for additional cells can be made straightforwardly, and an infinite
regular pattern can be built up without any backtracking. In case (b), many choices for additional cells have
to be tried, with much backtracking, and in the end the automatic procedure fails to find a repetitive
pattern. Nevertheless, as the last stage demonstrates, a repetitive pattern does in fact exist. In case (c),
the automatic procedure finds a fairly large and almost regular pattern that satisfies the constraints, but in
this case it turns out that no infinite pattern exists.

But if one systematically examines possible constraints in the
order shown on pages 214 and 215, then it turns out that after
examining more than 18 million of them, one finally discovers the
system shown on the facing page. And in this system, unlike all others
before it, no repetitive pattern is possible; the only pattern that satisfies
the constraint is the non-repetitive nested pattern shown in the picture.

After testing millions of constraints, and tens of billions of
candidate patterns, therefore, it is finally possible to establish that a
system based on simple constraints of the type discussed here can be

forced to exhibit behavior more complex than pure repetition.
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The simplest system based on constraints that is forced to
‘ﬂ]‘[!]‘[:.‘[E.‘[ﬂ]‘%‘i:“ﬂ]‘[i‘[ﬁ]‘[ﬁ.‘[ﬁ]‘ exhibit a non-repetitive pattern. The constraint requires that the

arrangement of colors around each cell must match one of the
12 templates shown, and that at least somewhere in the pattern a template containing a pair of stacked black cells must occur. In the
numbering scheme used on preceding pages, the constraint is number 18762389. The pattern shown is unique, in that no variations of
it, except for trivial translations, will satisfy the constraints. The nested structure on the diagonal essentially corresponds to a
progression of base 2 digit sequences for positive and negative numbers.
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What about still more complex behavior?

There are altogether 137,438,953,472 constraints of the type
shown on page 216. And of the millions of these that I have tested, none
have forced anything more complicated than the kind of nested
behavior seen on the previous page. But if one extends again the type of
constraints one considers, it turns out to become possible to construct
examples that force more complex behavior.

The idea is to set up templates that involve complete 3 x 3 blocks
of cells, including diagonal neighbors. The picture below then shows an
example of such a system, in which by allowing only a specific set of 33
templates, a nested pattern is forced to occur.
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An example of a system based on a constraint involving
3 x 3 templates of cells. In this particular system, only
the 33 templates shown above (out of the 512 possible
ones) are allowed to occur. This constraint, together
with the requirement that the first template must appear
at least somewhere, then turns out to force a nested
pattern to occur. The system shown was specifically
constructed in correspondence with the rule 60
elementary one-dimensional cellular automaton.

What about more complex patterns? Searches have not succeeded
in finding anything. But explicit construction, based on correspondence
with one-dimensional cellular automata, leads to the example shown at
the top of the facing page: a system with 56 allowed templates in which
the only pattern satisfying the constraint is a complex and largely

random one, derived from the rule 30 cellular automaton.

220




TWO DIMENSIONS AND BEYOND CHAPTER 5

A system based on a constraint, in which a complex and largely
random pattern is forced to occur. The constraint specifies that
only the 56 3 x 3 templates shown at left can occur anywhere in
the pattern, with the first template appearing at least once. The
pattern required to satisfy this constraint corresponds to a
shifted version of the one generated by the evolution of the rule
30 elementary one-dimensional cellular automaton.
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So finally this shows that it is indeed possible to force complex
behavior to occur in systems based on constraints. But from what we
have seen in this section such behavior appears to be quite rare: unlike
many of the simple rules that we have discussed in this book, it seems
that almost all simple constraints lead only to fairly simple patterns.

Any phenomenon based on rules can always ultimately also be
described in terms of constraints. But the results of this section indicate
that these descriptions can have to be fairly complicated for complex
behavior to occur. So the fact that traditional science and mathematics
tends to concentrate on equations that operate like constraints provides
yet another reason for their failure to identify the fundamental
phenomenon of complexity that I discuss in this book.
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Starting from Randomness

The Emergence of Order

In the past several chapters, we have seen many examples of behavior
that simple programs can produce. But while we have discussed a whole
range of different kinds of underlying rules, we have for the most part
considered only the simplest possible initial conditions—so that for
example we have usually started with just a single black cell.

My purpose in this chapter is to go to the opposite extreme, and
to consider completely random initial conditions, in which, for
example, every cell is chosen to be black or white at random.

One might think that starting from such randomness no order
would ever emerge. But in fact what we will find in this chapter is that
many systems spontaneously tend to organize themselves, so that even
with completely random initial conditions they end up producing
behavior that has many features that are not at all random.

The picture at the top of the next page shows as a simple first
example a cellular automaton which starts from a typical random
initial condition, then evolves down the page according to the very
simple rule that a cell becomes black if either of its neighbors are black.

What the picture then shows is that every region of white that
exists in the initial conditions progressively gets filled in with black, so
that in the end all that remains is a uniform state with every cell black.
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A cellular automaton that evolves to a simple uniform state when started from any random initial condition. The rule in
this case was first shown on page 24, and is number 254 in the scheme described on page 53. It specifies that a cell
should become black whenever either of its neighbors is already black.

The pictures below show examples of other cellular automata
that exhibit the same basic phenomenon. In each case the initial
conditions are random, but the system nevertheless quickly organizes

itself to become either uniformly white or uniformly black.
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Four more examples of cellular automata that evolve from random initial conditions to completely uniform states. The
rules shown here correspond to numbers 0, 32, 160 and 250.

The facing page shows cellular automata that exhibit slightly
more complicated behavior. Starting from random initial conditions,
these cellular automata again quickly settle down to stable states. But
now these stable states are not just uniform in color, but instead
involve a collection of definite structures that either remain fixed on
successive steps, or repeat periodically.

So if they have simple underlying rules, do all cellular automata
started from random initial conditions eventually settle down to give

stable states that somehow look simple?
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Examples of cellular automata that evolve from random initial conditions to produce a definite set of simple structures.
For any particular rule, the form of these structures is always the same. But their positions depend on the details of the
initial conditions given, and in many cases the final arrangement of structures can be thought of as a kind of filtered
version of the initial conditions. Thus for example in the first rule shown here a structure consisting of a black cell occurs
wherever there was an isolated black cell in the initial conditions. The rules shown are numbers 4, 108, 218 and 232.

It turns out that they do not. And indeed the picture on the next
page shows one of many examples in which starting from random
initial conditions there continues to be very complicated behavior
forever. And indeed the behavior that is produced appears in many
respects completely random. But dotted around the picture one sees
many definite white triangles and other small structures that indicate
at least a certain degree of organization.
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A cellular automaton that never settles down to a stable state, but instead continues to show

el "l RN
Sl m m/m/®l0 behavior that seems in many respects random. The rule is number 126.

226



STARTING FROM RANDOMNESS CHAPTER 6

Saita
';t%f' )
St
?‘

'_g_'g

N £ f
SRasmi

rule 30

rule 150 rule 182

Other examples of cellular automata that never settle down to stable states when started from random initial conditions. Each picture
is a total of 300 cells across. Note the presence of triangles and other small structures dotted throughout all of the pictures.
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rule 90 rule 106

Two more cellular automata that generate various small structures but continue to show seemingly quite random behavior forever.

The pictures above and on the previous page show more
examples of cellular automata with similar behavior. There is
considerable randomness in the patterns produced in each case. But
despite this randomness there are always triangles and other small
structures that emerge in the evolution of the system.

So just how complex can the behavior of a cellular automaton
that starts from random initial conditions be? We have seen some
examples where the behavior quickly stabilizes, and others where it
continues to be quite random forever. But in a sense the greatest
complexity lies between these extremes—in systems that neither
stabilize completely, nor exhibit close to uniform randomness forever.

The facing page and the one that follows show as an example the
cellular automaton that we first discussed on page 32. The initial
conditions used are again completely random. But the cellular
automaton quickly organizes itself into a set of definite localized
structures. Yet now these structures do not just remain fixed, but
instead move around and interact with each other in complicated ways.
And the result of this is an elaborate pattern that mixes order and

randomness—and is as complex as anything we have seen in this book.
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A continuation of the pattern from the previous page. Each page shows 700 steps in the evolution of the cellular automaton.
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Four Classes of Behavior

In the previous section we saw what a number of specific cellular
automata do if one starts them from random initial conditions. But in
this section I want to ask the more general question of what arbitrary
cellular automata do when started from random initial conditions.

One might at first assume that such a general question could
never have a useful answer. For every single cellular automaton after all
ultimately has a different underlying rule, with different properties and
potentially different consequences.

But the next few pages show various sequences of cellular
automata, all starting from random initial conditions.

And while it is indeed true that for almost every rule the specific
pattern produced is at least somewhat different, when one looks at all
the rules together, one sees something quite remarkable: that even
though each pattern is different in detail, the number of fundamentally
different types of patterns is very limited.

Indeed, among all kinds of cellular automata, it seems that the
patterns which arise can almost always be assigned quite easily to one
of just four basic classes illustrated below.

class 1 class 2 class 3 class 4

Examples of the four basic classes of behavior seen in the evolution of cellular automata from random initial conditions. | first
developed this classification in 1983.

These classes are conveniently numbered in order of increasing
complexity, and each one has certain immediate distinctive features.

In class 1, the behavior is very simple, and almost all initial
conditions lead to exactly the same uniform final state.
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rule 0 rule 4

[ — u— L | mara - Egi}!:_?rigé!:gi%iﬁ:?
bty o L R

rule 32 rule 36 rule 50 rule 54

rule 72 rule 76 rule 94
P T EEERT A -

rule 104 rule 108

rule 128 rule 132 rule 146 rule 150
g e g e e . T | T | T -

rule 160 rule 164 rule 178 rule 182

rule 200 rule 204 rule 218 rule 222

rule 232 rule 236 rule 250 rule 254

The behavior of all cellular automata that involve only nearest neighbors in a symmetrical way, have two possible colors for
each cell, and leave states consisting only of white cells unchanged.
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code 56

Totalistic cellular automata whose rules involve nearest and next-nearest neighbors, and where each cell has two possible colors.
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code 1002

code 1005

code 1008

code 1011

code 1014 code 1017 code 1020 code 1023
T g g e e Bl
code 1026 code 1032 code 1035

code 1038

code 1041

code 1044

code 1047

L R T

code 1050

code 1053

code 1059

i T T

code 1062

code 1068

e . &

code 1074

code 1077

code 1080

code 1083

code 1086

code 1089

code 1092

code 1095

A sequence of totalistic cellular automata with rules that involve only nearest neighbors, but where each cell can have

three possible colors.
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In class 2, there are many different possible final states, but all of
them consist just of a certain set of simple structures that either remain
the same forever or repeat every few steps.

In class 3, the behavior is more complicated, and seems in many
respects random, although triangles and other small-scale structures are
essentially always at some level seen.

And finally, as illustrated on the next few pages, class 4 involves a
mixture of order and randomness: localized structures are produced
which on their own are fairly simple, but these structures move around
and interact with each other in very complicated ways.

I originally discovered these four classes of behavior some seventeen
years ago by looking at thousands of pictures similar to those on the last
few pages. And at first, much as I have done here, I based my classification
purely on the general visual appearance of the patterns I saw.

But when I studied more detailed properties of cellular automata,
what I found was that most of these properties were closely correlated
with the classes that I had already identified. Indeed, in trying to predict
detailed properties of a particular cellular automaton, it was often
enough just to know what class the cellular automaton was in.

And in a sense the situation was similar to what is seen, say, with
the classification of materials into solids, liquids and gases, or of living
organisms into plants and animals. At first, a classification is made
purely on the basis of general appearance. But later, when more detailed
properties become known, these properties turn out to be correlated
with the classes that have already been identified.

Often it is possible to use such detailed properties to make more
precise definitions of the original classes. And typically all reasonable

definitions will then assign any particular system to the same class.

Examples of class 4 cellular automata with totalistic rules involving nearest neighbors and three possible
colors for each cell. Each picture shows 1500 steps of evolution from random initial conditions. »

235



SCIENCE

KIND OF

A NEW

STEPHEN WOLFRAM

code 1815

236



STARTING FROM RANDOMNESS CHAPTER &6

code 2007
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But with almost any general classification scheme there are
inevitably borderline cases which get assigned to one class by one
definition and another class by another definition. And so it is with
cellular automata: there are occasionally rules like those in the pictures
below that show some features of one class and some of another.

HEETY " TE
. :
;

:

code 219 code 438 code 1380 code 1632

Rare examples of borderline cellular automata that do not fit squarely into any one of the four basic classes described in the text.
Different definitions based on different specific properties will place these cellular automata into different classes. The rules shown
are totalistic ones involving nearest neighbors and three possible colors for each cell. The first rule can be either class 2 or class 4,
the second class 3 or 4, the third class 2 or 3 and the fourth class 1, 2 or 3.

But such rules are quite unusual, and in most cases the behavior
one sees instead falls squarely into one of the four classes described above.

So given the underlying rule for a particular cellular automaton,
can one tell what class of behavior the cellular automaton will produce?

In most cases there is no easy way to do this, and in fact there is
little choice but just to run the cellular automaton and see what it does.

But sometimes one can tell at least a certain amount simply from
the form of the underlying rule. And so for example all rules that lie in
the first two columns on page 232 can be shown to be unable ever to
produce anything besides class 1 or class 2 behavior.

In addition, even when one can tell rather little from a single rule,
it is often the case that rules which occur next to each other in some
sequence have similar behavior. This can be seen for example in the
pictures on the facing page. The top row of rules all have class 1
behavior. But then class 2 behavior is seen, followed by class 4 and then
class 3. And after that, the remainder of the rules are mostly class 3.

The fact that class 4 appears between class 2 and class 3 in the
pictures on the facing page is not uncommon. For while class 4 is above

class 3 in terms of apparent complexity, it is in a sense intermediate
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code 1000816 code 1000820 code 1000824 code 1000828

DT

L g S
code 1000840 code 1000844

code 1000832

code 1000852

code 1000868

s e

b
R Sk b

code 1000928 code 1000932 code 1000936 code 1000940

A sequence of totalistic rules involving nearest neighbors and four possible colors for each cell chosen to show transitions
between rules with different classes of behavior. Note that class 4 seems to occur between class 2 and class 3.
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between class 2 and class 3 in terms of what one might think of as
overall activity.

The point is that class 1 and 2 systems rapidly settle down to
states in which there is essentially no further activity. But class 3
systems continue to have many cells that change at every step, so that
they in a sense maintain a high level of activity forever. Class 4 systems
are then in the middle: for the activity that they show neither dies out
completely, as in class 2, nor remains at the high level seen in class 3.

And indeed when one looks at a particular class 4 system, it often
seems to waver between class 2 and class 3 behavior, never firmly
settling on either of them.

In some respects it is not surprising that among all possible
cellular automata one can identify some that are effectively on the
boundary between class 2 and class 3. But what is remarkable about
actual class 4 systems that one finds in practice is that they have
definite characteristics of their own—most notably the presence of
localized structures—that seem to have no direct relation to being
somehow on the boundary between class 2 and class 3.

And it turns out that class 4 systems with the same general
characteristics are seen for example not only in ordinary cellular
automata but also in such systems as continuous cellular automata.

The facing page shows a sequence of continuous cellular
automata of the kind we discussed on page 155. The underlying rules in
such systems involve a parameter that can vary smoothly from O to 1.

For different values of this parameter, the behavior one sees is
different. But it seems that this behavior falls into essentially the same
four classes that we have already seen in ordinary cellular automata.
And indeed there are even quite direct analogs of for example the
triangle structures that we saw in ordinary class 3 cellular automata.

But since continuous cellular automata have underlying rules
based on a continuous parameter, one can ask what happens if one
smoothly varies this parameter—and in particular one can ask what
sequence of classes of behavior one ends up seeing.

The answer is that there are normally some stretches of class 1 or
2 behavior, and some stretches of class 3 behavior. But at the transitions
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0.9

Examples of the evolution of continuous cellular automata from random initial conditions. As discussed on page 155, each
cell here can have any gray level between 0 and 1, and at each step the gray level of a given cell is determined by averaging
the gray levels of the cell and its two neighbors, adding the specified constant, and then keeping only the fractional part of
the result. The behavior produced once again falls into distinct classes that correspond well to the four classes seen on

previous pages in ordinary cellular automata.
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0.398

{0.5, 1.13}

Examples of continuous cellular automata that exhibit class 4 behavior. The rules are of the same kind as in the previous

the gray level of each neighboring cell is multiplied by 1.13 before the

the actual gray levels in these pictures are obtained by taking the difference between the

except that in the third case shown here,

picture

average is done. In addition

r, thus removing the uniform stripes visible in the previous picture. It is remarkable

that class 4 behavior with discrete localized structures can still occur in the continuous systems shown here.

gray level of each cell and its neighbo
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it turns out that class 4 behavior is typically seen—as illustrated on the
facing page. And what is particularly remarkable is that this behavior
involves the same kinds of localized structures and other features that
we saw in ordinary discrete class 4 cellular automata.

So what about two-dimensional cellular automata? Do these also
exhibit the same four classes of behavior that we have seen in one
dimension? The pictures on the next two pages show various steps in
the evolution of some simple two-dimensional cellular automata
starting from random initial conditions. And just as in one dimension a
few distinct classes of behavior can immediately be seen.

But the correspondence with one dimension becomes much more
obvious if one looks not at the complete state of a two-dimensional
cellular automaton at a few specific steps, but rather at a one-dimensional
slice through the system for a whole sequence of steps.

The pictures on page 248 show examples of such slices. And what
we see is that the patterns in these slices look remarkably similar to the
patterns we already saw in ordinary one-dimensional cellular automata.
Indeed, by looking at such slices one can readily identify the very same
four classes of behavior as in one-dimensional cellular automata.

So in particular one sees class 4 behavior. In the examples on page
248, however, such behavior always seems to occur superimposed on
some kind of repetitive background—much as in the case of the rule
110 one-dimensional cellular automaton on page 229.

So can one get class 4 behavior with a simple white background?
Much as in one dimension this does not seem to happen with the very
simplest possible kinds of rules. But as soon as one goes to slightly more
complicated rules—though still very simple—one can find examples.

And so as one example page 249 shows a two-dimensional
cellular automaton often called the Game of Life in which all sorts of
localized structures occur even on a white background. If one watches a
movie of the behavior of this cellular automaton its correspondence to a
one-dimensional class 4 system is not particularly obvious. But as soon
as one looks at a one-dimensional slice—as on page 249—what one sees
is immediately strikingly similar to what we have seen in many

one-dimensional class 4 cellular automata.
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Examples of the evolution of two-dimensional cellular automata with various totalistic rules starting from random
initial conditions. The rules involve a cell and its four immediate neighbors. Each successive base 2 digit in the code
number for the rule gives the outcome when the total of the cell and its four neighbors runs from 5 down to 0.
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Patterns produced after 500 steps in the evolution of a sequence of two-dimensional cellular automata starting from
random initial conditions. The rules shown are of the same kind as on the facing page, and include most of the 64
possibilities that leave a state that contains only white cells unchanged.
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One-dimensional slices through the evolution of various two-dimensional cellular automata. In each picture black cells further back

from the position of the slice are shown in progressively lighter shades of gray, as if they were receding into a kind of fog. Note the
presence of examples of both class 3 and class 4 behavior that look strikingly similar to examples in one dimension.
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The behavior of a class 4 two-dimensional cellular automaton often known in
recreational computing as the Game of Life. Localized structures that move
(so-called gliders) show up as streaks in the pictures given here. The rule for
this cellular automaton considers the 8 neighbors of a cell (including
diagonals): if two of these neighbors are black, then the cell stays the same
color as before; if three are black, then the cell becomes black; and if any
other number of neighbors are black, then the cell becomes white. This rule
is outer totalistic 9-neighbor code 224. The pictures on the right show cells
that were black on preceding steps in progressively lighter shades of gray.
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Sensitivity to Initial Conditions

In the previous section we identified four basic classes of cellular
automata by looking at the overall appearance of patterns they produce.
But these four classes also have other significant distinguishing
features—and one important example of these is their sensitivity to
small changes in initial conditions.

The pictures below show the effect of changing the initial color of
a single cell in a typical cellular automaton from each of the four classes
of cellular automata identified in the previous section.

rule 160 rule 108

rule 110

The results are rather different for each class.

In class 1, changes always die out, and in fact exactly the same
final state is reached regardless of what initial conditions were used. In
class 2, changes may persist, but they always remain localized in a
small region of the system. In class 3, however, the behavior is quite

different. For as the facing page shows, any change that is made

250

The effect of changing the color of a single cell in the initial conditions for typical cellular automata from each of the
four classes identified in the previous section. The black dots indicate all the cells that change. The way that such
changes behave is characteristically different for each of the four classes of systems.
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The effect of changing the color of a single initial cell in three typical class 3 cellular automata.
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typically spreads at a uniform rate, eventually affecting every part of the
system. In class 4, changes can also spread, but only in a sporadic way—
as illustrated on the facing page and the one that follows.

So what is the real significance of these different responses to
changes in initial conditions? In a sense what they reveal are basic
differences in the way that each class of systems handles information.

In class 1, information about initial conditions is always rapidly
forgotten—for whatever the initial conditions were, the system quickly
evolves to a single final state that shows no trace of them.

In class 2, some information about initial conditions is retained
in the final configuration of structures, but this information always
remains completely localized, and is never in any way communicated
from one part of the system to another.

A characteristic feature of class 3 systems, on the other hand, is
that they show long-range communication of information—so that any
change made anywhere in the system will almost always eventually be
communicated even to the most distant parts of the system.

Class 4 systems are once again somewhat intermediate between
class 2 and class 3. Long-range communication of information is in
principle possible, but it does not always occur—for any particular
change is only communicated to other parts of the system if it happens
to affect one of the localized structures that moves across the system.

There are many characteristic differences between the four
classes of systems that we identified in the previous section. But their
differences in the handling of information are in some respects
particularly fundamental. And indeed, as we will see later in this book,
it is often possible to understand some of the most important features
of systems that occur in nature just by looking at how their handling of
information corresponds to what we have seen in the basic classes of

systems that we have identified here.

The effect of small changes in initial conditions in the rule 110 class 4 cellular automaton. The changes
spread only when they are in effect carried by localized structures that propagates across the system. p
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Systems of Limited Size and Class 2 Behavior

In the past two sections we have seen two important features of class 2
systems: first, that their behavior is always eventually repetitive, and
second, that they do not support any kind of long-range communication.

So what is the connection between these two features?

The answer is that the absence of long-range communication
effectively forces each part of a class 2 system to behave as if it were a
system of limited size. And it is then a general result that any system of
limited size that involves discrete elements and follows definite rules
must always eventually exhibit repetitive behavior. Indeed, as we will
discuss in the next chapter, it is this phenomenon that is ultimately
responsible for much of the repetitive behavior that we see in nature.

The pictures below show a very simple example of the basic
phenomenon. In each case there is a dot that can be in one of six possible
positions. And at every step the dot moves a fixed number of positions to

the right, wrapping around as soon as it reaches the right-hand end.
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A simple system that contains a single dot which can be in one of six possible positions. A